lateral roots
Recently Published Documents


TOTAL DOCUMENTS

953
(FIVE YEARS 292)

H-INDEX

47
(FIVE YEARS 9)

2022 ◽  
Vol 23 (2) ◽  
pp. 861
Author(s):  
Rui Wu ◽  
Zhixin Liu ◽  
Jiajing Wang ◽  
Chenxi Guo ◽  
Yaping Zhou ◽  
...  

There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Virgilija Gavelienė ◽  
Sigita Jurkonienė ◽  
Elžbieta Jankovska-Bortkevič ◽  
Danguolė Švegždienė

The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied—the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species.


Author(s):  
Laura Laschke ◽  
Vadim Schütz ◽  
Oliver Schackow ◽  
Dieter Sicker ◽  
Lothar Hennig ◽  
...  

AbstractFor the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10–30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30–60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Maya Kechid ◽  
Guilhem Desbrosses ◽  
Lydia Gamet ◽  
Loren Castaings ◽  
Fabrice Varoquaux ◽  
...  

Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacterium isolated from roots of oilseed rape, stimulates Arabidopsis growth. We have previously shown that the NRT2.5 and NRT2.6 genes are required for this growth promotion response. Since these genes are members of the NRT2 family of nitrate transporters, the nitrogen assimilatory pathway could be involved in growth promotion by STM196. We address this hypothesis using two nitrate reductase mutants, G5 deleted in the major nitrate reductase gene NIA2 and G′4-3 altered in both NIA1 and NIA2 genes. Both mutants had a reduced growth rate and STM196 failed to increase their biomass production on a medium containing NO3− as the sole nitrogen source. However, they both displayed similar growth promotion by STM196 when grown on an NH4+ medium. STM196 was able to stimulate lateral roots development of the mutants under both nutrition conditions. Altogether, our results indicate that the nitrate assimilatory metabolism is not a primary target of STM196 interaction and is not involved in the root developmental response. The NIA1 transcript level was reduced in the shoots of nrt2.5 and nrt2.6 mutants suggesting a role for this nitrate reductase isoform independently from its role in nitrate assimilation.


2022 ◽  
Vol 905 ◽  
pp. 353-358
Author(s):  
Zi Xin Liao ◽  
Xiao Hao Li ◽  
Ying Bin Xue ◽  
Nai De Yang ◽  
Zheng Wei Wu ◽  
...  

Soybean seedlings were treated with different phosphorus (P) concentrations for 20 days to investigate their growth and development. The root growth and development of soybean seedlings was the best when the concentration of phosphorus was 250 μmol/L. After 20 days of cultivation at this concentration, the roots of soybean seedlings were developed, indicating that the main root length, lateral root length, and the number of lateral root was the best among all treatments, and the number of lateral roots was quite a few. In addition, when the concentration of P was at 250 μmol/L, it had a better promotion effect on the plant height of soybean seedlings, and could significantly enhance the development of soybean seedlings. Moreover, the growth of soybean seedlings would be inhibited at the condition of phosphorus deficiency or excessive phosphorus. In this experiment, the growth indexes of soybean seedlings were compared between four treatments of phosphorus concentration, so as to make a basic study on the physiological effect of soybean on phosphorus in early stage.


2022 ◽  
Vol 119 (1) ◽  
pp. e2101846119
Author(s):  
Tsubasa Kawai ◽  
Kyosuke Shibata ◽  
Ryosuke Akahoshi ◽  
Shunsaku Nishiuchi ◽  
Hirokazu Takahashi ◽  
...  

The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10. Our findings could help improve root system plasticity under variable environments.


2022 ◽  
pp. 59-66
Author(s):  
T. M. DeJong

Abstract Root development and growth is similar to shoot growth in that extension growth is initiated by an apical meristem and girth growth of mature roots is carried out by the vascular cambium. However, the initiation of lateral roots is entirely different than the initiation of lateral leaves or shoot meristems. This chapter deals with understanding the root sink in fruit trees by studying root growth, including the initiation of lateral roots, root classification according to size and function, factors affecting their growth, and rootstocks.


2021 ◽  
Vol 50 (4) ◽  
pp. 1195-1201
Author(s):  
Rifat Samad ◽  
Parveen Rashid ◽  
JL Karmoker

Increasing concentrations of aluminium progressively declined primary root length and number of lateral roots in rice and chickpea seedlings grown in rhizobox. It also inhibited the root and shoot length, dry weight of root and shoot of rice and chickpea seedlings grown in solution culture. On the other hand, it enhanced shoot/root length ratio and dry weight ratio for both the genera. Bangladesh J. Bot. 50(4): 1195-1201, 2021 (December)


Author(s):  
Thomas Roulé ◽  
Martin Crespi ◽  
Thomas Blein

As sessile organisms, plants have evolved sophisticated mechanisms of gene regulation to cope with changing environments. Among them, long non-coding RNAs (lncRNAs) are a class of RNAs regulating gene expression at both transcriptional and post-transcriptional levels. They are highly responsive to environmental cues or developmental processes and are generally involved in fine-tuning plant responses to these signals. Roots, in addition to anchoring the plant to the soil, allow it to absorb the major part of its mineral nutrients and water. Furthermore, roots directly sense environmental constraints such as mineral nutrient availability and abiotic or biotic stresses and dynamically adapt their growth and architecture. Here, we review the role of lncRNAs in the control of root growth and development. In particular, we highlight their action in fine-tuning primary root growth and the development of root lateral organs, such as lateral roots and symbiotic nodules. Lastly, we report their involvement in plant response to stresses and the regulation of nutrient assimilation and homeostasis, two processes leading to the modification of root architecture. LncRNAs could become interesting targets in plant breeding programs to subtly acclimate crops to coming environmental changes.


2021 ◽  
Author(s):  
Sarah Bereswill ◽  
Nicole Rudolph-Mohr ◽  
Sascha E Oswald

Abstract PurposeRhizosphere respiration strongly affects CO2 concentration within vegetated soils and resulting fluxes to the atmosphere. Respiration in the rhizosphere exhibits high spatiotemporal variability that may be linked to root type, but also to small-scale variation of soil water content altering gas transport dynamics in the soil. We address spatiotemporal dynamics of CO2 and O2 concentration in the rhizosphere via non-invasive in-situ imaging.MethodsOptodes sensitive to CO2 and O2 were applied to non-invasively measure in-situ rhizosphere CO2 and O2 concentration of white lupine (Lupinus albus) grown in slab-shaped glass rhizotrons. We monitored CO2 concentration over the course of 16 days at constant water content and also performed a drying-rewetting experiment to explore sensitivity of CO2 and O2 concentration to soil moisture changes. ResultsHotspots of respiration formed around cluster roots and CO2 concentration locally increased to > 20 % pCO2 (CO2 partial pressure). After rewetting the soil, cluster roots consumed available O2 significantly faster compared to non-cluster lateral roots. In wet soil, CO2 accumulation zones extended up to 9.5 mm from the root surface compared to 0.3-1 mm in dry soil.ConclusionResults from this imaging experiment indicate that respiratory activity differs substantially within the root system of a plant individual and that cluster roots are hotspots of respiration. As rhizosphere CO2 and O2 concentration was strongly sensitive to soil water content and its variation, we recommend monitoring the soil water content prior and during the measurement of rhizosphere respiration.


Sign in / Sign up

Export Citation Format

Share Document