scholarly journals Field Comparison of Tensiometer and Granular Matrix Sensor Automatic Drip Irrigation on Tomato

2005 ◽  
Vol 15 (3) ◽  
pp. 584-590 ◽  
Author(s):  
Rafael Muñoz-Carpena ◽  
Yuncong C. Li ◽  
Waldemar Klassen ◽  
Michael D. Dukes

A low-volume/high frequency (LVHF) soil moisture-based drip irrigation system was tested on a shallow sandy soil at a commercial tomato (Lycopersicon esculentum) farm in southern Florida. Six LVHF irrigation treatments were compared with the standard commercial practice on the farm (control), where a portable pump was used for manual drip irrigation twice each week. In the six LVHF treatments the system was continuously pressurized by means of an electrical pump and a pressure tank, and controlled by an irrigation timer set to irrigate a maximum of five times per day with the irrigation time (i.e., volume) set according to historical evapotranspiration (ET) demands in the area. Two treatments were based on timer schedules, one to supply 100% of the maximum recommended crop water needs in the area based on historical ET (ET-100%), and the other to supply 150% of those needs (ET-150%). The other four treatments were created by interfacing two types of soil moisture sensors (switching tensiometers and granular matrix sensors with control modules) set at two moisture points (wet = 10 kPa, optimal = 15 kPa) in a closed control loop with the irrigation timer programmed at the ET-100% schedule. Results showed that the six LVHF treatments reduced water use while not significantly affecting tomato yields. Switching tensiometers at the 15 kPa set point performed the best (up to 73% reduction in water use when compared to the control, 50% with respect to ET-100%). The results show that water use below historical ET levels can be obtained without sacrificing yield by keeping the root zone moisture at controlled levels with the soil-moisture based system. Routine maintenance was critical for reliable operation of the switching tensiometers. Granular matrix sensor based irrigation behaved erratically, and did not improve water savings compared to ET-100%, indicating that this system was not effective under the conditions of the area due to the sensor's slow response to frequent wetting-rewetting cycles and characteristics of the interface.

Author(s):  
R. Suvitha ◽  
A. Velayutham ◽  
V. Geethalakshmi ◽  
S. Panneerselvam ◽  
P. Jeyakumar ◽  
...  

Field experiment was conducted to evaluate the performance of different automated drip irrigation on tomato crop under sandy clay loam soil in Tamil Nadu Agricultural University during kharif 2019 and kharif 2020. Five treatments comprising 4 different automated drip irrigation systems are time based drip irrigation, volume based drip irrigation, soil moisture sensor based irrigation, switching tensiometer based irrigation and one is conventional method of irrigation were tested. The results revealed that tensiometer based drip irrigation recorded higher fruit yield of 95.11 and 96.21 t ha-1 and water use efficiency of 21.10 and 25.42 t ha-mm-1 resulting in increment over conventional method of irrigation. However, the above treatment was followed by soil moisture sensor based drip irrigation in tomato. Tensiometer based drip irrigation helps to save the water up to 54.91 and 60.55 % compared to conventional method of irrigation during kharif 2019 and 2020.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1964 ◽  
Author(s):  
Ortuani ◽  
Facchi ◽  
Mayer ◽  
Bianchi ◽  
Bianchi ◽  
...  

Although many studies in the literature illustrate the numerous devices and methodologies nowadays existing for assessing the spatial variability within agricultural fields, and indicate the potential for variable-rate irrigation (VRI) in vineyards, only very few works deal with the implementation of VRI systems to manage such heterogeneity, and these studies are usually conducted in experimental fields for research aims. In this study, a VR drip irrigation system was designed for a 1-ha productive vineyard in Northern Italy and managed during the agricultural season 2018, to demonstrate feasibility and effectiveness of a water supply differentiated according to the spatial variability detected in field. Electrical resistivity maps obtained by means of an electro-magnetic induction sensor were used to detect four homogeneous zones with similar soil properties. In each zone, a soil profile was opened, and soil samples were taken and analyzed in laboratory. Two irrigation management zones (MZs) were identified by grouping homogeneous zones on the basis of their hydrological properties, and an irrigation prescription map was built consistently with the total available water (TAW) content in the root zone of the two MZs. The designed drip irrigation system consisted of three independent sectors: the first two supplied water to the two MZs, while the third sector (reference sector) was managed following the farmer’s habits. During the season, irrigation in the first two sectors was fine-tuned using information provided by soil moisture probes installed in each sector. Results showed a reduction of water use by 18% compared to the ‘reference’ sector without losses in yield and product quality, and a grape’s maturation more homogeneous in time.


2008 ◽  
Vol 95 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Taisheng Du ◽  
Shaozhong Kang ◽  
Jianhua Zhang ◽  
Fusheng Li ◽  
Boyuan Yan

2013 ◽  
Vol 726-731 ◽  
pp. 3035-3039 ◽  
Author(s):  
Xue Bin Qi ◽  
Zong Dong Huang ◽  
Dong Mei Qiao ◽  
Ping Li ◽  
Zhi Juan Zhao ◽  
...  

Agriculture is a big consumer of fresh water in competition with other sectors of the society. The agricultural sector continues to have a negative impact on the ecological status of the environment. The worlds interest in high quality food is increasing. Field experiments were conducted to investigate the effect of subsurface drip irrigation on physiological responses, yield and water use efficiency, Soil nitrogen, Root weight density of potato in the semi-humid region of middle China using subsurface drip irrigation. The experiment used second-stage treated wastewater with and without addition of chloride, and both subsurface drip and furrow irrigations were investigated. Results indicated that the alternate partial root-zone irrigation is a practicable water-saving strategy for potato. The drip with chlorinated and non-chlorinated water improved water use efficiency by 21.48% and 39.1%, respectively, and 44.1% in the furrow irrigation. Partial root zone drying irrigation stimulates potato root growth and enhances root density. The content of the heavy metal in the potato tubers is no more than the National Food Requirements, and it is consistent with National Food Hygiene Stands.


2011 ◽  
Author(s):  
Soon Goon Choi ◽  
Jin-Yong Choi ◽  
Won-Ho Nam ◽  
Eun Mi Hong ◽  
Sang-Ho Jeon

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 947 ◽  
Author(s):  
Abdu Y. Yimam ◽  
Tewodros T. Assefa ◽  
Nigus F. Adane ◽  
Seifu A. Tilahun ◽  
Manoj K. Jha ◽  
...  

A field experiment consists of conservation agriculture (CA) and conventional tillage (CT) practices were set up in two areas, Robit and Dangishta, in sub-humid Ethiopian highlands. Irrigation water use, soil moisture, and agronomic data were monitored, and laboratory testing was conducted for soil samples, which were collected from 0 to 40 cm depth before planting and after harvest during the study period of 2015–2017. Calculation of crop coefficient (Kc) revealed a significant decrease in Kc values under CA as compared to CT. The result depicted that CA with a drip irrigation system significantly (α = 0.05) reduced Kc values of crops as compared to CT. Specifically, 20% reductions were observed for onion, cabbage, and garlic under CA whereas 10% reductions were observed for pepper throughout the crop base period. Consequently, irrigation water measurement showed that about 18% to 28% of a significant irrigation water savings were observed for the range of vegetables under CA as compared to CT. On the other hand, the results of soil measurement showed the CA practice significantly (α = 0.05) increased soil moisture (4%, 7%, 8%, and 10% increment for onion, cabbage, garlic, pepper) than CT practice even if irrigation input was small in CA practice. In addition, CA was found to improve the soil physico-chemical properties with significant improvement on organic matter (10%), field capacity (4%), and total nitrogen (10%) in the Dangishta experimental site. CA with drip irrigation is evidenced to be an efficient water-saving technology while improving soil properties to support sustainable intensification in the region.


2017 ◽  
Vol 2 (01) ◽  
pp. 72-77
Author(s):  
Ram Kumar ◽  
Joginder Singh

Drip irrigation is basically precise and slow application of water in the form of discrete continuous drops, sprayed through mechanical devices, called emitters into the root zone of the plant. The field experiment on Impact of fertigation and drip system layout were conducted at Research farm at IFTM University Moradabad (UP). The experiment was laid out in factorial randomized block design with treatments. In chilli maximum yield of 812 g/plant which is worked out as 0.006 t/ha was observed for the treatment T2. Even though the yield for the treatment T2 was high and was due to the reduction in the quantity of material for drip irrigation system. At harvesting time, samples of green pepper fruits were randomly harvested from each plot to measure fruit length, fruit diameter. In addition, total weight of fruits in each treatment were recorded by harvesting pepper fruits twice weekly and then the total yield as Kg/fed., was calculated. The maximum yield of crop 900 gm/plant and minimum of yield 600 gm/plant and total yield 52270 gm (52.270 kg).


Sign in / Sign up

Export Citation Format

Share Document