scholarly journals Modelling of an Artificial Neural Network for Electrical Discharge Machining of Hot Pressed Zirconium Diboride-Silicon Carbide Composites

2016 ◽  
Vol 40 (3) ◽  
pp. 67-80 ◽  
Author(s):  
S. Sivasankar ◽  
R. Jeyapaul
Author(s):  
Raja Das ◽  
M. K. Pradhan

The objective of the chapter is to present the application of Artificial Neural Network (ANN) modelling of the Electrical Discharge Machining (EDM) process. It establishes the best ANN model by comparing the prediction from different models under the effect of process parameters. In EDM, the motivation is frequently to get better Material Removal Rate (MRR) with fulfilling better surface quality of machined components. The vital requirements are as small a radial overcut with minimal tool wear rate. The quality of a machined surface is very important to fulfilling the growing demands of higher component performance, durability, and reliability. To improve the reliability of the machine component, it is necessary to have in depth knowledge of the effect of parameters on the aforesaid responses of the components. An extensive chain of experiments has been conducted over a wide range of input parameters, using the full factorial design. More than 150 experiments have been conducted on AISI D2 work piece materials using copper electrodes to get the data for training and testing. The additional experiments were obtained to validate the model predictions. The performance of three neural network models is discussed in the evaluation of the generalization ability of the trained neural network. It was observed that the artificial neural network models could predict the process performance with reasonable accuracy, under varying machining conditions.


2020 ◽  
Vol 4 (2) ◽  
pp. 44
Author(s):  
Vishal Lalwani ◽  
Priyaranjan Sharma ◽  
Catalin Iulian Pruncu ◽  
Deepak Rajendra Unune

This paper deals with the development and comparison of prediction models established using response surface methodology (RSM) and artificial neural network (ANN) for a wire electrical discharge machining (WEDM) process. The WEDM experiments were designed using central composite design (CCD) for machining of Inconel 718 superalloy. During experimentation, the pulse-on-time (TON), pulse-off-time (TOFF), servo-voltage (SV), peak current (IP), and wire tension (WT) were chosen as control factors, whereas, the kerf width (Kf), surface roughness (Ra), and materials removal rate (MRR) were selected as performance attributes. The analysis of variance tests was performed to identify the control factors that significantly affect the performance attributes. The double hidden layer ANN model was developed using a back-propagation ANN algorithm, trained by the experimental results. The prediction accuracy of the established ANN model was found to be superior to the RSM model. Finally, the Non-Dominated Sorting Genetic Algorithm-II (NSGA- II) was implemented to determine the optimum WEDM conditions from multiple objectives.


Sign in / Sign up

Export Citation Format

Share Document