turning process
Recently Published Documents


TOTAL DOCUMENTS

1087
(FIVE YEARS 324)

H-INDEX

38
(FIVE YEARS 7)

Author(s):  
Nikhil J. Rathod ◽  
Manoj K. Chopra ◽  
Prem Kumar Chaurasiya ◽  
Umesh S. Vidhate ◽  
Abhishek Dasore

2021 ◽  
Vol 16 (4) ◽  
pp. 443-456
Author(s):  
D.D. Trung ◽  
H.X. Thinh

Multi-criteria decision-making is important and it affects the efficiency of a mechanical processing process as well as an operation in general. It is understood as determining the best alternative among many alternatives. In this study, the results of a multi-criteria decision-making study are presented. In which, sixteen experiments on turning process were carried out. The input parameters of the experiments are the cutting speed, the feed speed, and the depth of cut. After conducting the experiments, the surface roughness and the material removal rate (MRR) were determined. To determine which experiment guarantees the minimum surface roughness and maximum MRR simultaneously, four multi-criteria decision-making methods including the MAIRCA, the EAMR, the MARCOS, and the TOPSIS were used. Two methods the Entropy and the MEREC were used to determine the weights for the criteria. The combination of four multi-criteria making decision methods with two determination methods of the weights has created eight ranking solutions for the experiments, which is the novelty of this study. An amazing result was obtained that all eight solutions all determined the same best experiment. From the obtained results, a recommendation was proposed that the multi-criteria making decision methods and the weighting methods using in this study can also be used for multi-criteria making decision in other cases, other processes.


2021 ◽  
Vol 11 (24) ◽  
pp. 12070
Author(s):  
Yutaka Nakano ◽  
Tsubasa Kishi ◽  
Hiroki Takahara

Chatter is more likely to occur during the turning process of a thin-walled cylindrical workpiece owing to the low rigidity of such workpieces. Chatter causes intensive vibration, deterioration of the surface finish accuracy, tool damage, and tool wear. Tuned mass dampers (TMD) are usually applied as a passive damping technique to induce a large damping effect using a small mass. This study experimentally investigated the effect of the mounting arrangement and tuning parameters of the TMDs on the production of chatter during the turning process of a thin-walled cylinder, wherein multiple TMDs with extremely small mass ratios were attached to the rotating workpiece. The results of the cutting tests performed by varying the circumferential and axial mounting positions of the TMDs exhibited different characteristics of the chatter suppression effect. Conclusively, the TMDs could suppress the chatter generated by the vibration mode with circumferential nodes if they were mounted on the workpiece to avoid the coincidence of the circumferential arrangement with the pitch of the vibration nodes, regardless of the extremely small mass of the TMDs.


2021 ◽  
Vol 13 (24) ◽  
pp. 13803
Author(s):  
Shun Jia ◽  
Shang Wang ◽  
Jingxiang Lv ◽  
Wei Cai ◽  
Na Zhang ◽  
...  

Energy-saving and emission reduction are recognized as the primary measure to tackle the problems associated with climate change, which is one of the major challenges for humanity for the forthcoming decades. Energy modeling and process parameters optimization of machining are effective and powerful ways to realize energy saving in the manufacturing industry. In order to realize high quality and low energy consumption machining of computer numerical control (CNC) lathe, a multi-objective optimization of CNC turning process parameters considering transient-steady state energy consumption is proposed. By analyzing the energy consumption characteristics in the process of machining and introducing practical constraints, such as machine tool equipment performance and tool life, a multi-objective optimization model with turning process parameters as optimization variables and high quality and low energy consumption as optimization objectives is established. The model is solved by non-dominated sorting genetic algorithm-II (NSGA-II), and the pareto optimal solution set of the model is obtained. Finally, the machining process of shaft parts is studied by CK6153i CNC lathe. The results show that 38.3% energy consumption is saved, and the surface roughness of workpiece is reduced by 47.0%, which verifies the effectiveness of the optimization method.


Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


Author(s):  
Ramakrishnan A ◽  
◽  
B.Radha Krishnan ◽  

This paper presents the methodology of surface roughness inspection in the CNC Turning process. Adaptive Neural Fuzzy Inference System classifier can predict the high accuracy roughness value by insisting on surface roughness image. The vision system captures the image and determines the mean value by using the ANFIS algorithm. Training sets variables speed, depth of cut, feed rate, and mean value are feed as the input, and manual stylus probe surface roughness value is feed as the output. After the simulation process, the testing input was performed, and finally getting the vision measurement value. This higher accuracy (above 95%) and low error rate (below 4%) can be achieved by using the ANFIS classifier, which is predominantly helpful for the industry to measure surface roughness. Assign the quality of the product by evaluating the manual stylus probe and vision measurement value.


Sign in / Sign up

Export Citation Format

Share Document