Recurrent Selection for Specific Combining Ability and Type of Gene Action Involved in Yield Heterosis in Corn 1

1959 ◽  
Vol 51 (7) ◽  
pp. 392-394 ◽  
Author(s):  
G. F. Sprague ◽  
W. A. Russell ◽  
L. H. Penny
HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 626a-626
Author(s):  
Christopher S. Cramer ◽  
Todd C. Wehner

The combining ability (hybrid performance) of breeding lines is often determined to measure selection progress for yield. Plant breeders utilize this information to develop breeding lines with higher combining ability. The objectives of this study were to measure the specific combining ability for yield traits over three selection cycles from four pickling cucumber populations with Gy 14, a popular pickling cucumber inbred; and to determine the change in specific combining ability for yield traits in four populations improved through recurrent selection. Four pickling cucumber populations, North Carolina wide base pickle (NCWBP), medium base pickle (NCMBP), elite pickle 1 (NCEP1), and hardwickii 1 (NCH1), were developed and improved through modified half-sib selection from 1983 to 1992 to improve yield per se and fruit quality in each population. Eleven families were randomly selected from each of 3 selection cycles (early, intermediate, advanced) from each populations and were hybridized to Gy 14. Plants were sprayed with Paraquat to defoliate them and to simulate once-over harvest. The experiment was a randomized complete-block design with 22 replications per population arranged in a split plot with the four populations as whole plots and the three cycles as subplots. The combining ability for fruit quality rating of NCWBP and NCMBP increased as the number of selection cycles increased. Conversely, selection for higher yield per se decreased the combining ability of the NCEP1 population for improved fruit quality. In most instances, the combining ability of each population exhibited a constant response over selection cycles for each measured yield trait.


HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1315-1317 ◽  
Author(s):  
Yayeh Zewdie ◽  
Paul W. Bosland ◽  
Robert Steiner

The inheritance of capsaicinoid content was studied in five Capsicum pubescens Ruiz & Pav. genotypes using diallel analysis. General combining ability and specific combining ability effects were significant for all capsaicinoids studied, indicating additive and nonadditive gene actions are present. The association of high capsaicinoid contents with high positive general combining ability of the parents also indicates the predominance of additive gene action in capsaicinoid inheritance. Because of the predominant additive gene effect, recurrent selection would be a good breeding method to increase capsaicinoid level in the population studied. Heterosis was observed in hybrids for some of the capsaicinoids, suggesting that F1 hybrids could also be used to increase capsaicinoid content.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 747a-747
Author(s):  
Christopher S. Cramer ◽  
Todd C. Wehner

Plant breeders often measure selection progress for yield by measuring the hybrid performance (combining ability) of a breeding line. This information is used to develop breeding lines with higher combining ability. The objectives of this study were to measure the specific combining ability for yield traits over three selection cycles from four slicing cucumber populations with `Poinsett 76', a popular slicing cucumber cultivar; and to determine the change in specific combining ability for yield traits in four populations improved through recurrent selection. Four slicing cucumber populations, North Carolina wide base slicer (NCWBS), medium base slicer (NCMBS), elite slicer 1 (NCES 1), and Beit Alpha 1 (NCBA1), were developed and improved through modified half-sib selection from 1983 to 1992 to improve yield per se and fruit quality in each population. Eleven families were randomly selected from each of three selection cycles (early, intermediate, advanced) from each population and were hybridized to `Poinsett 76'. Twenty-three seeds from each cross were planted in 1.2-m plots in Spring and Summer 1995. When 10% of fruit were oversized (>50 mm in diameter), plants were sprayed with paraquat to defoliate them and to simulate once-over harvest. The experimental design was a randomized complete block with 22 replications per population arranged in a split plot with the four populations as whole plots and the three cycles as subplots. The combining ability for early and marketable yield of NCWBS and NCBA1 increased as the number of selection cycles increased. Conversely, selection for higher yield per se decreased the combining ability of the NCES 1 population for early and marketable yield. The NCBA1 population exhibited the largest gain (131.2%) from cycle 0 to 8 averaged over all traits. Early yield exhibited the largest gain (60.8%) averaged over all populations.


Sign in / Sign up

Export Citation Format

Share Document