recurrent selection
Recently Published Documents


TOTAL DOCUMENTS

1036
(FIVE YEARS 151)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Vol 52 (5) ◽  
Author(s):  
Fernanda Vargas Valadares ◽  
Rafael Nunes de Almeida ◽  
Lázaro Renilton Emerick Silva ◽  
Geferson Rocha Santos ◽  
Raissa Olmo Lacerda Pirovani ◽  
...  

ABSTRACT: In view of the need to increase genetic variability to obtain materials with a significant capacity to drought tolerance, this study conducted a cycle of a reciprocal recurrent selection of full-sib families of maize. To this end, 64 full-sib families of maize were evaluated in two environments according to their morpho-agronomic data in a randomized block design with two replicates. It were analyzed of Male flowering (MF); Female flowering (FF); Flowering interval (IF); days for flowering (DF); Plant height (PH); Ear height (EH); number of plants at the Stand (NPS); Number of broken plant (NBrP); Number of bedded plants (NBeP); Strawing (St); Ear length (EL); Ear diameter (ED); Ear number (EN); Prolificacy (Pr); Number of diseased ears (NDE); Number of ears attacked by pests (NEP); Ear weight (EW); Yield (YIE) and Total Chlorophyll Index (TCI). The analysis of variance was performed by the F test at 5% significance level, and also the evaluation of genetic parameters. Regarding morpho-agronomic data, the analysis of variance and the analysis of genetic parameters showed that there was no interaction genotype x environment with regard to the genetic variability among the families under study. Lastly, the final selection of the superior genotypes was made on the basis of the ranking of the 40 most productive families, from which, combined with the molecular data, the 30 most productive, most drought-tolerant, and most genetically diverse ones were selected to compose the next cycle of recurrent maize selection aiming water-stress tolerance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260997
Author(s):  
Emilly Ruas Alkimim ◽  
Eveline Teixeira Caixeta ◽  
Tiago Vieira Sousa ◽  
Itamara Bomfim Gois ◽  
Felipe Lopes da Silva ◽  
...  

Breeding programs of the species Coffea canephora rely heavily on the significant genetic variability between and within its two varietal groups (conilon and robusta). The use of hybrid families and individuals has been less common. The objectives of this study were to evaluate parents and families from the populations of conilon, robusta, and its hybrids and to define the best breeding and selection strategies for productivity and disease resistance traits. As such, 71 conilon clones, 56 robusta clones, and 20 hybrid families were evaluated over several years for the following traits: vegetative vigor, incidence of rust and cercosporiosis, fruit ripening time, fruit size, plant height, canopy diameter, and yield per plant. Components of variance and genetic parameters were estimated via residual maximum likelihood (REML) and genotypic values were predicted via best linear unbiased prediction (BLUP). Genetic variability among parents (clones) and hybrid families was detected for most of the evaluated traits. The Mulamba-Rank index suggests potential gains up to 17% for the genotypic aggregate of traits in the hybrid population. An intrapopulation recurrent selection within the hybrid population would be the best breeding strategy because the genetic variability, narrow and broad senses heritabilities and selective accuracies for important traits were maximized in the crossed population. Besides, such strategy is simple, low cost and quicker than the concurrent reciprocal recurrent selection in the two parental populations, and this maximizes the genetic gain for unit of time.


Author(s):  
A. Kavitha Reddy ◽  
D. Mohan Reddy ◽  
Lakshminarayana R. Vemireddy ◽  
P. Sudhakar ◽  
B.V. Bhaskara Reddy

Background: As blackgram cultivation is majorly spread in rain fed areas, breeding short duration and high yielding blackgram varieties is of profound importance to tackle terminal moisture stress and reap impressive yields by breaking the yield plateau. Hence, the present study was aimed to identify highly heterotic cross combinations for yield and earliness. Methods: Six parents along with 15 F1s were evaluated (rabi, 2019) for seed yield and its component traits along with earliness to estimate the magnitude of heterosis. Result: The cross LBG-752 × TBG-104 exhibited heterosis estimates in desirable direction for yield and earliness. The next best crosses were LBG-752 × PU-31, TU-40 × TBG-104, LBG-752 × TU-40 and IPU-2-43 × TBG-104. Because of its autogamous genetic architecture and biological constraints in large scale economic hybrid seed production, heterosis could be exploited only by isolating the early maturing and high yielding segregants followed by bi-parental or recurrent selection in early segregating generations and single plant selection in subsequent generations that would result in short duration and high yielding blackgram variety that fits well into different ecological niches.


2021 ◽  
Author(s):  
Yun-Joo Kang ◽  
Bo-Mi Lee ◽  
Jangmi Kim ◽  
Moon Nam ◽  
Myoung-Hee Lee ◽  
...  

Abstract High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2,326 and 2,454 SNP markers that spanned a total genetic distance of 2,133 cM across 16 linkage groups and 2,169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1,123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


2021 ◽  
Vol 34 (4) ◽  
pp. 752-762
Author(s):  
CECÍLIA LEÃO PEREIRA RESENDE ◽  
JULIANA BEZERRA MARTINS ◽  
FELIPE RIBEIRO ILARIA ◽  
CARLA MARIANE MACHADO DOS SANTOS ◽  
FABRICIO RODRIGUES

ABSTRACT The objective of this work was to estimate and compare phenotypic and genetic parameters after three cycles of intrapopulation recurrent selection for fresh corn grown under three nutrient availability conditions. Three experiments derived from the same population (MV-003) were conducted to assess the ability of progenies to absorb nutrients, one under adequate fertilization (control; MV-006), one under low nitrogen availability (N; MV-006N), and one under low phosphorus availability (P; MV-006P). The experiments were carried out in randomized blocks, with 64 half-sib progenies and three replications for each nutritional condition. Chlorophyll index, plant height, ear insertion, ear diameter, ear length, unhusked ear yield, and marketable husked ear were evaluated. The populations showed variability for the three nutrient availability conditions. The variability reduced after only three selection cycles; thus, evaluating a higher number of half-sib progenies, above 64, under low N and P availability is indicated. The rates used to identify the most efficient progenies in breeding programs should be close to the appropriate one, with a slow reduction after the selection cycles. The variability will be thus maintained, with a greater possibility of identifying more promising progenies. In addition, the frequency of favorable alleles increases more gradually and effectively. The N and P rate of 60 kg ha-1 is not indicated as a critical level for the initial phase of the program.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengjie Chen ◽  
Dengguo Tang ◽  
Kun Hu ◽  
Lei Zhang ◽  
Yong Yin ◽  
...  

Abstract Background Teosinte ear bears single spikelet, whereas maize ear bears paired spikelets, doubling the number of grains in each cupulate during maize domestication. In the past 20 years, genetic analysis of single vs. paired spikelets (PEDS) has been stagnant. A better understanding of genetic basis of PEDS could help fine mapping of quantitative trait loci (QTL) and cloning of genes. Results In this study, the advanced mapping populations (BC3F2 and BC4F2) of maize × teosinte were developed by phenotypic recurrent selection. Four genomic regions associated with PEDS were detected using QTL-seq, located on 194.64–299.52 Mb, 0–162.80 Mb, 12.82–97.17 Mb, and 125.06–157.01 Mb of chromosomes 1, 3, 6, and 8, respectively. Five QTL for PEDS were identified in the regions of QTL-seq using traditional QTL mapping. Each QTL explained 1.12–38.05% of the phenotypic variance (PVE); notably, QTL qPEDS3.1 with the average PVE of 35.29% was identified in all tests. Moreover, 14 epistatic QTL were detected, with the total PVE of 47.57–66.81% in each test. The QTL qPEDS3.1 overlapped with, or was close to, one locus of 7 epistatic QTL. Near-isogenic lines (NILs) of QTL qPEDS1.1, qPEDS3.1, qPEDS6.1, and qPEDS8.1 were constructed. All individuals of NIL-qPEDS6.1(MT1) and NIL-qPEDS8.1(MT1) showed paired spikelets (PEDS = 0), but the flowering time was 7 days shorter in the NIL-qPEDS8.1(MT1). The ratio of plants with PEDS > 0 was low (1/18 to 3/18) in the NIL-qPEDS1.1(MT1) and NIL-qPEDS3.1(MT1), maybe due to the epistatic effect. Conclusion Our results suggested that major QTL, minor QTL, epistasis and photoperiod were associated with the variation of PEDS, which help us better understand the genetic basis of PEDS and provide a genetic resource for fine mapping of QTL.


2021 ◽  
Author(s):  
Julio Cesar DoVale ◽  
Humberto Fanelli Carvalho ◽  
Felipe Sabadin ◽  
Roberto Fritsche-Neto

Abstract Reductions of genotyping marker density have been extensively evaluated as potential strategies to reduce the genotyping costs of genomic selection (GS). Low-density marker panels are appealing in GS because they entail lower multicollinearity and computational time-consumption and allow more individuals to be genotyped for the same cost. However, statistical models used in GS are usually evaluated with empirical data, using "static" training sets and populations. This may be adequate for making predictions during a breeding program's initial cycles, but not for the long term. Moreover, to the best of our knowledge, no GS models consider the effect of dominance, which is particularly important for breeding outcomes in cross-pollinated crops. Hence, dominance effects are an important and unexplored issue in GS for long-term programs involving allogamous species. To address it, we employed two approaches: analysis of empirical maize datasets and simulations of long-term breeding applying phenotypic and genomic recurrent selection (intrapopulation and reciprocal schemes). In both schemes, we simulated twenty breeding cycles and assessed the effect of marker density reduction on the population mean, the best crosses, additive variance, selective accuracy, and response to selection with models (additive, additive-dominant, general (GCA), and specific combining ability (SCA)). Our results indicate that marker reduction based on linkage disequilibrium levels provides useful predictions only within a cycle, as accuracy significantly decreases over cycles. In the long-term, high-marker density provides the best responses to selection. The model to be used depends on the breeding scheme: additive for intrapopulation and additive-dominant or SCA for reciprocal.


2021 ◽  
Author(s):  
Dediel Junior Amaral Rocha ◽  
Ulisses Arruda Cordova ◽  
Jefferson Flaresso ◽  
Joseli Stradiotto ◽  
Murilo Dalla-Costa

SCS313 Serrano is a tetraploid cultivar of Lotus uliginosus developed by the Research and Rural Extension Company of Santa Catarina, Brazil, to improve flowering ability and seed production in low-latitude regions. SCS313 Serrano was developed from the selection of individual plants of the cultivar Grasslands Maku. Seeds from the initial breeding population was bulked and used to establish a field trial with spaced plants. The plants were selected and classified as late or early, regarding the beginning of flowering, through visual evaluations based on the time for the beginning of flowering. Selected plants were transplanted to crossing blocks and seed harvested on individual plants; a progeny test was conducted, with four replications, through the establishment of approximately 100 genotypes in a field. This process was repeated for three consecutive cycles of recurrent selection. Considering the mean time for the beginning of flowering and vigor performance, the best five genotypes were selected as parental lines for the synthetic cultivar SCS313 Serrano. A morphological difference between SCS313 Serrano and Grasslands Maku is that SCS313 Serrano has absence of hairs in stems whereas Grasslands Maku has a medium stem hair density. In addition, SCS313 Serrano exhibits profuse flowering ability while Grasslands Maku exhibits very sparse seedhead formation. SCS313 Serrano exhibited good persistence under wet conditions and similar forage yields compared to other lotus commercial cultivars. Thus, SCS313 Serrano is recommended to be used as pasture in mixtures with grass in livestock systems, mainly on wet soils.


Sign in / Sign up

Export Citation Format

Share Document