Seedling Vigor Evaluation of Four Birdsfoot Trefoil Varieties Grown Under Two Temperature Regimes 1

Crop Science ◽  
1968 ◽  
Vol 8 (6) ◽  
pp. 756-757 ◽  
Author(s):  
Clee S. Cooper ◽  
Mickey Qualls
1970 ◽  
Vol 50 (1) ◽  
pp. 103-106 ◽  
Author(s):  
B. E. TWAMLEY

Several hundred two-year-old nursery plants originating in the early-type trefoil cultivar Maitland were rated for flowering maturity, morphological features and growth pattern. Open-pollination seed was collected from these and 100-seed weight determinations were made.The experimental material was organized into two sections for testing purposes. In one, the effect of maternal maturity on the seedling vigor of the progeny was studied and in the other the effect of maternal morphology. Each section was made up of five classes, varying either in maturity or in morphology. Each class contained either nine or ten progeny lines. The range in seed size was similar for all classes. No relationship was found between maturity, morphological type or growth habit of the maternal parent on the one hand and the seedling vigor rating of their progeny at six and ten weeks of age on the other.The breeding implications of these findings are discussed.


Botany ◽  
2018 ◽  
Vol 96 (12) ◽  
pp. 837-850 ◽  
Author(s):  
Awatif M. Abdulmajeed ◽  
Mohammad I. Abo Gamar ◽  
Mirwais M. Qaderi

Environmental stress factors can influence methane (CH4) emissions from plants. There are a few studies on the interactive effects of stress factors on plant aerobic CH4, but none on the comparative evaluation of CH4 emissions between and among plant varieties. We examined the effects of temperature, UVB radiation, and watering regime on CH4 emissions from 10 pea (Pisum sativum L.) varieties first and then selected two varieties with the highest (237J Sundance; var. 1) and lowest (422 Ho Lan Dow; var. 2) emissions for further studies. Plants were grown in controlled-environment growth chambers under two temperature regimes (22 °C / 18 °C and 28 °C / 24 °C, 16 h light / 8 h dark), two UVB levels (0 and 5 kJ·m−2·d−1), and two watering regimes (well-watered and water-stressed) for 14 days, after one week of growth under 22 °C / 18 °C. Higher temperatures and water stress increased CH4 emissions, and increased emission was associated with stress. Pea varieties varied in growth and CH4 emissions; var. 1 was more stressed and had higher emission than var. 2. In the stressed variety, the water-stressed plants grown under higher temperatures at UVB5 had the highest CH4 emission, whereas the well-watered plants grown under lower temperatures at UVB5 had the lowest emission. We conclude that climatic stress conditions increase CH4 emissions, which vary with plant varieties.


1981 ◽  
Vol 38 (8) ◽  
pp. 978-981 ◽  
Author(s):  
Wayne S. Gardner ◽  
Thomas F. Nalepa ◽  
Michael A. Quigley ◽  
John M. Malczyk

Phosphate release rates by Stylodrilus heringianus, tubificids, and Chironomus spp. were quantified in laboratory experiments by incubating the animals in wet sand under two temperature regimes (5 and 20 °C) and under two nutritional states (full and empty guts). Inorganic phosphorus release rates (± SE) for animals incubated 24 h ranged from 0.12 ± 0.02 (n = 5) nmol phosphorus (P)∙(mg ash-free dry weight)−1∙h−1 for S. heringianus beginning with cleared guts at 5 °C to 0.81 ± 0.09 (n = 5) nmol P∙(mg ash-free dry weight)−1∙h−1 for chironomids beginning with full guts at 20 °C. Calculations based on total invertebrate bio-mass and mean basal release rate suggest that benthic invertebrate excretion could account for most P released from aerobic Lake Michigan sediments.Key words: phosphorus, benthic invertebrates, macroinvertebrates, excretion, nutrients, sediments, nutrient release


Sign in / Sign up

Export Citation Format

Share Document