benthic invertebrate
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 100)

H-INDEX

51
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Ryan Peek ◽  
Katie Irving ◽  
Sarah M. Yarnell ◽  
Rob Lusardi ◽  
Eric D. Stein ◽  
...  

Large state or regional environmental flow programs, such as the one based on the California Environmental Flows Framework, rely on broadly applicable relationships between flow and ecology to inform management decisions. California, despite having high flow and bioassessment data density, has not established relationships between specific elements of the annual hydrograph and biological stream condition. To address this, we spatially and temporally linked USGS gage stations and biological assessment sites in California to identify suitable paired sites for comparisons of streamflow alteration with biological condition at a statewide scale. Flows were assessed using a set of functional flow metrics that provide a comprehensive way to compare alteration and seasonal variation in streamflow across different locations. Biological response was evaluated using the California Stream Condition Index (CSCI) and Algal Stream Condition Index (ASCI), which quantify biological conditions by translating benthic invertebrate or algal resources and watershed-scale environmental data into an overall measure of stream health. These indices provide a consistent statewide standard for interpreting bioassessment data, and thus, a means of quantitatively comparing stream conditions throughout the state. The results indicate that indices of biological stream condition were most closely associated with flow alteration in seasonality and timing metrics, such as fall pulse timing, dry-season timing, and wet season timing. Magnitude metrics such as dry-season baseflow, wet season baseflow, and the fall pulse magnitude were also important in influencing biological stream conditions. Development of ecological flow needs in large-scale environmental programs should consider that alteration to any of the seasonal flow components (e.g., dry-season baseflow, fall pulse flow, wet-season baseflow, spring recession flow) may be important in restructuring biological communities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Flavia Gravina ◽  
Edoardo Casoli ◽  
Luigia Donnarumma ◽  
Jacopo Giampaoletti ◽  
Federica Antonelli ◽  
...  

Historical traces of organisms on the seafloor, such as shells and tubes, constitute the ecological memory of ancient benthic assemblages and serve as an important resource for understanding the assembly of modern communities. Archeological shipwrecks are particularly interesting submerged substrata for both their archeological and biological implications. For the first time, we studied the species composition and life-history traits of dominant organisms in the benthic assemblage on a bronze Carthaginian naval ram, which sank more than two thousand years ago in the Southern Tyrrhenian Sea. By comparing the species composition of the ram assemblage with those of the surrounding habitats, we inferred possible colonization patterns for the ram and discussed the informative role of the shipwreck as a proxy of marine biodiversity. The ram assemblage was rich in species, including both sessile (bryozoans, serpulid polychaetes, and few bivalves) and motile (gastropods) species. Sexual reproduction with free-spawning fertilization and long-duration larvae characterized most species. The long submersion time of the ram, together with the reproductive strategies, growth forms, and motility of the dominant species were key factors shaping the community of the ram. The ram itself offers an archeological artifact of inestimable value, but our analysis revealed it to be an effective collector of fauna from the surrounding seabed. The ram community hosted species from a range of nearby natural habitats (mostly coralligenous, detritic bottoms, and zoosteracean meadows) and thus served as a proxy for marine biodiversity on the surrounding seabed. We conclude that the presence of many species on the ram that commonly occur in adjacent habitats of great environmental value was informative and highlight the important marine biodiversity in the area of the Aegadian archipelago.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Goulding ◽  
Pedro M. Sousa ◽  
Gilda Silva ◽  
João Paulo Medeiros ◽  
Frederico Carvalho ◽  
...  

The present work aims to identify changes in the macroinvertebrate community of the Tagus estuary (Portugal) due to improvements in water quality and to climate change. Data was collected over a period of 16 years (1998–2014) from different sites located along the estuarine gradient. The AZTI Marine Biotic Index (AMBI) was used to assess the ecological quality status based on benthic invertebrate communities and identify possible variations associated with changes in water quality. The overall distribution of each species was examined to detect possible changes associated with climate, based on species’ affinity for more temperate or subtropical climates. Results demonstrate that there was an overall improvement of AMBI scores during the assessment period. The analysis of the geographical distribution of benthic species seems to indicate that there has been an increase of species which prefer subtropical climates in the shallower waters of the estuary, whereas in the deeper estuarine sections the propensity is for species that prefer temperate climates.


2021 ◽  
Vol 9 ◽  
Author(s):  
Maria Baturina ◽  
Olga Kononova ◽  
Elena Fefilova ◽  
Olga Loskutova

Invertebrates are important elements of aquatic ecosystems and play a crucial role in the transformation of matter and energy in continental water bodies. Communities of aquatic invertebrates are characterised by high sensitivity to pollution by nutrients and toxic substances and acidification of water bodies; they serve as good bioindicators of the quality of the aquatic environment and impacts on hydroecosystems. All hydrobionts participate in the processes of self-purification of water bodies. The presented dataset provides information on the aquatic invertebrate community of a large northern river. During 2018-2020, we collected data on changes in the quantitative indicators of the development of benthic and planktonic communities, as well as the species diversity of their fauna. The dataset combines information about the occurrence and abundance of benthic and planktonic invertebrates and summarises data of aquatic invertebrate species found in the Vychegda River in the zone of influence from the pulp and paper mill. The presented dataset is part of a monitoring programme of the river ecosystems in the production area of Mondi Syktyvkar JSC (the European North-East of Russia, Komi Republic). The dataset describes the structure of benthic invertebrate and plankton communities in the Northern Dvina River Basin. The data on the finding and abundance of large taxa of aquatic invertebrates and species of some groups: Oligochaeta, Cladocera, Copepoda, Rotifera, Ephemeroptera, Plecoptera and Trichoptera are presented. In total, the resource includes 8720 findings of invertebrates, of which 6041 are for zoobenthos organisms and 2679 for zooplankton organisms.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 123
Author(s):  
Tim J. Arciszewski

Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.


2021 ◽  
Vol 175 ◽  
pp. 103448
Author(s):  
Stephanie R. Valdez ◽  
Elizabeth C. Shaver ◽  
Danielle A. Keller ◽  
Joseph P. Morton ◽  
Y. Stacy Zhang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2596
Author(s):  
Gorazd Urbanič ◽  
Zlatko Mihaljević ◽  
Vesna Petkovska ◽  
Maja Pavlin Urbanič

Under the EU Water Framework Directive, ecological assessment and management are based on type-specific reference conditions. In the EU it may be difficult to find sites in large rivers with at least near-natural conditions, though this is not the case in southeast Europe, where stretches of large rivers still exist with at least near-natural conditions, meaning that there is little or no disturbance from hydromorphological alteration, water quality, land use in the catchment and alien species. We examined benthic invertebrate assemblages in 45 samples collected from near-natural sites of several large rivers: Sava, Drava, Mura, Kupa and Una. The near-natural benthic invertebrate assemblages of large rivers contained several rare or remarkable species, especially among stoneflies, e.g., Marthamea vitripennis, Xanthoperla apicalis. We compared benthic invertebrate communities in river sections with fine and coarse substrates and in three eco-hydromorphological (ECO-HM) types of large rivers, reflecting habitat heterogeneity: lowland-deep, lowland-braided and intermountain. Multivariate analysis of variance (PERMANOVA) was used to statistically evaluate similarities among assemblages. It was found that the composition of benthic invertebrate assemblages varied by both ECO-HM types and substrate category. Similarity percentage (SIMPER) analysis showed that the average dissimilarity of benthic invertebrate assemblages was high between all ECO-HM type pairs and between fine and coarse substrate. We found that habitat heterogeneity and substrate independently influenced benthic invertebrate assemblages. To achieve ecological goals in the management of large rivers, in addition to functionality, a holistic view with at least near-natural assemblages, including the names of the taxa present, should also be considered.


Ecology ◽  
2021 ◽  
Author(s):  
Lyubov E. Burlakova ◽  
Alexander Y. Karatayev ◽  
Allison R. Hrycik ◽  
Susan E. Daniel ◽  
Knut Mehler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Finn A. Viehberg ◽  
Andrew S. Medeiros ◽  
Birgit Plessen ◽  
Xiaowa Wang ◽  
Derek Muir ◽  
...  

AbstractHigh latitude freshwater ecosystems are sentinels of human activity and environmental change. The lakes and ponds that characterize Arctic landscapes have a low resilience to buffer variability in climate, especially with increasing global anthropogenic stressors in recent decades. Here, we show that a small freshwater pond in proximity of the archaeological site “Native Point” on Southampton Island (Nunavut, Arctic Canada) is a highly sensitive environmental recorder. The sediment analyses allowed for pinpointing the first arrival of Sadlermiut culture at Native Point to ~ 1250 CE, followed by a dietary shift likely in response to the onset of cooling in the region ~ 1400 CE. The influence of the Sadlermiut on the environment persisted long after the last of their population perished in 1903. Presently, the pond remains a distorted ecosystem that has experienced fundamental shifts in the benthic invertebrate assemblages and accumulated anthropogenic metals in the sediment. Our multi-proxy paleolimnological investigation using geochemical and biological indicators emphasizes that direct and indirect anthropogenic impacts have long-term environmental implications on high latitude ecosystems.


Sign in / Sign up

Export Citation Format

Share Document