Sequence Diversity of Puroindoline-a, Puroindoline-b, and the Grain Softness Protein Genes in Aegilops tauschii Coss

Crop Science ◽  
2004 ◽  
Vol 44 (5) ◽  
pp. 1808-1816 ◽  
Author(s):  
A. N. Massa ◽  
C. F. Morris ◽  
B. S. Gill
Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1242-1250 ◽  
Author(s):  
M Turner ◽  
Y Mukai ◽  
P Leroy ◽  
B Charef ◽  
R Appels ◽  
...  

The grain softness proteins or friabilins are known to be composed of three main components: puroindoline a, puroindoline b, and GSP-1. cDNAs for GSP-1 have previously been mapped to group-5 chromosomes and their location on chromosome 5D is closely linked to the grain hardness (Ha) locus of hexaploid wheat. A genomic DNA clone containing the GSP-1 gene (wGSP1-A1) from hexaploid wheat has been identified by fluorescent in situ hybridization as having originated from the distal end of the short arm of chromosome 5A. A genomic clone containing the gene (wGSP1-D1) was also isolated from Aegilops tauschii, the donor of the D genome to bread wheat. There are no introns in the GSP-1 genes, and there is high sequence identity between wGSP1-A1 and wGSP1-D1 up to 1 kb 5' and 300 bp 3' to wGSP1-D1. However, regions further upstream and downstream of wGSP1-D1 share no significant sequence identity to corresponding sequences in wGSP1-A1. These regions therefore identified potentially valuable sequences for tracing the Ha locus through assaying polymorphic DNA sequences. The sequence from 300 to 500 bp 3' to wGSP1-D1 (wGSP1-D13) was mapped to the Ha locus in a mapping population. wGSP1-D13 was also tightly linked to genes for puroindoline a and puroindoline b which have been previously mapped to be at the Ha locus. In addition wGSP1-D13 was used to detect RFLPs between near isogenic soft and hard Falcon lines and in a random selection of soft and hard wheats.Key words: wheat, grain hardness, chromosome 5, puroindoline, GSP-1.


Diversity ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 114 ◽  
Author(s):  
Mark Wilkinson ◽  
Robert King ◽  
Roberta Grimaldi

The puroindoline proteins, PINA and PINB, which are encoded by the Pina and Pinb genes located at the Ha locus on chromosome 5D of bread wheat, are considered to be the most important determinants of grain hardness. However, the recent identification of Pinb-2 genes on group 7 chromosomes has stressed the importance of considering the effects of related genes and proteins. Several species related to wheat (two diploid Agropyron spp., four tetraploid Elymus spp. and five hexaploid Elymus and Agropyron spp.) were therefore analyzed to identify novel variation in Pina, Pinb and Pinb-2 genes which could be exploited for the improvement of cultivated wheat. A novel sequence for the Pina gene was detected in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus and Elymus nutans and novel PINB sequences in Elymus burchan-buddae, Elymus dahuricus subsp. excelsus, and Elymus nutans. A novel PINB-2 variant was also detected in Agropyron repens and Elymus repens. The encoded proteins detected all showed changes in the tryptophan-rich domain as well as changes in and/or deletions of basic and hydrophobic residues. In addition, two new AGP sequences were identified in Elymus nutans and Elymus wawawaiensis. The data presented therefore highlight the sequence diversity in this important gene family and the potential to exploit this diversity to modify grain texture and end-use quality in wheat.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 330-338 ◽  
Author(s):  
K -M Turnbull ◽  
M Turner ◽  
Y Mukai ◽  
M Yamamoto ◽  
M K Morell ◽  
...  

The grain hardness locus, Ha, is located at the distal end of the short arm of chromosome 5D in wheat. Three polypeptides, puroindoline-a, puroindoline-b, and grain softness protein (GSP-1), have been identified as components of friabilin, a biochemical marker for grain softness, and the genes for these polypeptides are known to be tightly linked to the Ha locus. However, this region of the chromosome 5D has not been well characterized and the physical distance between the markers is not known. Separate lambda clones containing the puroindoline-a gene and the puroindoline-b gene have been isolated from an Aegilops tauschii (the donor of the D genome to wheat) genomic lambda library and investigated. Considerable variation appears to exist in the organization of the region upstream of the gene for puroindoline-b among species closely related to wheat. Using in situ hybridization the genes for puroindoline-a, -b, and GSP-1 were demonstrated to be physically located at the tip of the short arm of chromosome 5 of A. tauschii. Four overlapping clones were isolated from a large-insert BAC library constructed from A. tauschii and of these one contained genes for all of puroindoline-a, puroindoline-b, and GSP-1. The gene for puroindoline-a is located between the other two genes at a distance no greater than approximately 30 kb from either gene. The BAC clone containing all three known genes was used to screen a cDNA library constructed from hexaploid wheat and cDNAs that could encode novel polypeptides were isolated.Key words: puroindolines, GSP-1, chromosome 5D, BAC library, tauschii.


Crop Science ◽  
2006 ◽  
Vol 46 (4) ◽  
pp. 1656-1665 ◽  
Author(s):  
C. G. Swan ◽  
F. D. Meyer ◽  
A. C. Hogg ◽  
J. M. Martin ◽  
M. J. Giroux

Genome ◽  
1991 ◽  
Vol 34 (3) ◽  
pp. 387-395 ◽  
Author(s):  
E. S. Lagudah ◽  
R. Appels ◽  
D. McNeil

Variation in the intergenic spacer region of the ribosomal RNA genes (located at the Nor locus) was assayed in a collection of 411 accessions of Triticum tauschii from Turkey, USSR, Iran, Afghanisan, Pakistan, and China. Twenty rDNA genotypes were identified and it was demonstrated that T. tauschii accessions from the USSR and Iran have the highest diversity at the Nor locus. At least four of the rDNA genotypes were demonstrated to be alleles of a single major locus, in segregating F2 progeny analyses. The TaqI restriction fragment associated with rDNA genotype 7 was shown to be the same as the Nor-D3a allele present in all bread wheats (based on chromosome location and length of the intergenic spacer region). This genotype was significantly associated with T. t. ssp. strangulata, previously argued to be the donor of the D genome to hexaploid wheat. The Nor locus showed a high level of recombination with the 5SDna-2 locus, which was also located on chromosome 5D. The Nor locus is placed distal to the 5SDna-2 locus but proximal to the grain softness protein gene (XGsp) on the short arm of chromosome 5D.Key words: D genome, Nor-D3, rDNA polymorphism, chromosomal location.


2013 ◽  
Vol 83 (6) ◽  
pp. 507-521 ◽  
Author(s):  
Craig F. Morris ◽  
Hongwei Geng ◽  
Brian S. Beecher ◽  
Dongyun Ma

1994 ◽  
Vol 223 (3) ◽  
pp. 917-925 ◽  
Author(s):  
Sadequr RAHMAN ◽  
Christopher J. JOLLY ◽  
John H. SKERRITT ◽  
Andrea WALLOSHECK

Sign in / Sign up

Export Citation Format

Share Document