Rapid Determination of the Base Exchange Capacity of Soils with the Flame Photometer

1948 ◽  
Vol 12 (C) ◽  
pp. 449-451
Author(s):  
V. V. Rendig
Soil Science ◽  
1938 ◽  
Vol 45 (6) ◽  
pp. 483-496 ◽  
Author(s):  
L. C. OLSON ◽  
R. H. BRAY

Clay Minerals ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 249-266 ◽  
Author(s):  
B. Schampera ◽  
S. Dultz

AbstractThe anion adsorption capability of clays can be improved significantly by modification with certain organic cations. However, surface properties and the microstructure of the clay might change and limit the use of organo-clays in barrier systems. In this study an experimental setup is introduced which allows the rapid determination of effective diffusion coefficients (Deff) for H2O in clay samples. H2O→D2O exchange experiments on hexadecyl-pyridinium (HDPy)-montmorillonite samples were performed in a diffusion cell attached to the ATR unit of a Fourier-transform infrared spectrometer. The mean Deff for H2O in a D2O-saturated original montmorillonite is 2.44 × 10–11 m2/s in the bulk density range of 1.1–1.8 g/cm3. Hydrophobic surfaces increase the diffusivity only at high bulk densities in the saturated state. The mean Deff is lower when HDPy is applied in amounts ⩾80% of the cation exchange capacity in comparison with the original sample. At a saturation degree of the pores of 40%, Deff for all samples is one order of magnitude less than in the saturated state. Results on Deff obtained by ATR-FTIR spectroscopy are in good agreement with through-diffusion studies.


Author(s):  
T. Y. Tan ◽  
W. K. Tice

In studying ion implanted semiconductors and fast neutron irradiated metals, the need for characterizing small dislocation loops having diameters of a few hundred angstrom units usually arises. The weak beam imaging method is a powerful technique for analyzing these loops. Because of the large reduction in stacking fault (SF) fringe spacing at large sg, this method allows for a rapid determination of whether the loop is faulted, and, hence, whether it is a perfect or a Frank partial loop. This method was first used by Bicknell to image small faulted loops in boron implanted silicon. He explained the fringe spacing by kinematical theory, i.e., ≃l/(Sg) in the fault fringe in depth oscillation. The fault image contrast formation mechanism is, however, really more complicated.


Sign in / Sign up

Export Citation Format

Share Document