Soil Organic Matter Pools and Their Associations with Carbon Mineralization Kinetics

2000 ◽  
Vol 64 (1) ◽  
pp. 184-189 ◽  
Author(s):  
R. Alvarez ◽  
C.R. Alvarez
1992 ◽  
Vol 72 (4) ◽  
pp. 403-416 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
R. P. Zentner ◽  
S. A. Brandt ◽  
M. Schnitzer

The influence of five crop rotations and the rotation phases (i.e., rotation-yr) on some soil organic matter characteristics was investigated in a long-term (23 yr) study carried out on an Orthic Dark Brown Chernozemic soil at Scott, Saskatchewan. The cropping systems included different cropping frequencies and crop types (cereals, oilseeds, and legume-hay). Soil samples were taken from the 0- to 7.5- and 7.5- to 15-cm depths in mid-September 1988, 2 wk after harvest of the grain crops (i.e., 2 mo after hay harvest and plowdown). Most effects of rotations, and rotation phases, on soil biological characteristics assessed, were significant primarily in the top 7.5-cm soil depth. Increasing the cropping frequency did not increase soil organic matter. Excessive preseeding tillage of stubble plots may have masked any potential advantage provided by frequent cropping. Including alfalfa (Medicago sativa L.) hay crops in rotation with grain crops decreased soil organic matter in the fallow and grain crop rotation phases of rotations. This was likely due to increased moisture stress depressing associated cereal production in this semiarid environment. As expected, rotation phase did not influence soil organic C, but alfalfa under-seeded into barley (Hordeum vulgare L.) increased soil organic nitrogen. We believe this was due to crop residue inputs from the seedling alfalfa. Microbial biomass C and N, C mineralization, the specific respiratory activity (ratio of CO2-C respired/microbial biomass C) and hydrolyzable amino acids were also greater in the rotation phases in which barley was underseeded with alfalfa. Carbon mineralization and specific respiratory activity were directly related to estimated crop residue-C returned to soil, but not residue-N. However, both were increased by including alfalfa in the rotation. Carbon mineralization and specific respiratory activity were more sensitive indexes of soil organic matter quality than biomass C and N per se. Hydrolyzable amino acids and amino sugars responded to the treatments in a manner similar to total soil organic N. Relative molar distribution of amino acids was unaffected by crop rotation or rotation phase. Potentially mineralizable N in this soil was low compared to other Canadian prairie soils, even though the total soil organic N of the Scott soil was relatively high. We concluded that (i) all soil biochemical characteristics studied are useful for assessing soil quality changes; (ii) when studying soil changes, thin (0- to 7.5-cm) soil slices are more likely to reveal treatment effects than thicker slices; (iii) all rotation phases should be analyzed whenever forage legumes are constituents of crop rotations. Key words: C mineralization; microbial biomass, amino acids, N mineralization, specific respiratory activity


Radiocarbon ◽  
2016 ◽  
Vol 58 (4) ◽  
pp. 905-919 ◽  
Author(s):  
Emma L Tilston ◽  
Philippa L Ascough ◽  
Mark H Garnett ◽  
Michael I Bird

AbstractConverting biomass to charcoal produces physical and chemical changes greatly increasing environmental recalcitrance, leading to great interest in the potential of this carbon form as a long-term sequestration strategy for climate change mitigation. Uncertainty remains, however, over the timescale of charcoal’s environmental stability, with estimates varying from decadal to millennial scales. Uncertainty also remains over charcoal’s effect on other aspects of carbon biogeochemical cycling and allied nutrient cycles such as nitrogen. Radiocarbon is a powerful tool to investigate charcoal mineralization due to its sensitivity; here we report the results of a study using 14C-dead charcoal (pMC=0.137±0.002) in organic-rich soil (pMC=99.76±0.46), assessing charcoal degradation over 55 days of incubation. Using this method, we discriminated between decomposition of indigenous soil organic matter (SOM) and charcoal by microorganisms. SOM was the major source of carbon respired from the soil, but there was also a contribution from charcoal carbon mineralization. This contribution was 2.1 and 1.1% on days 27 and 55, respectively. We also observed a negative priming effect due to charcoal additions to soil, where SOM mineralization was repressed by up to 14.1%, presumably arising from physico-chemical interactions between soil and charcoal.


2011 ◽  
Vol 49 (No. 1) ◽  
pp. 8-11 ◽  
Author(s):  
L. Kolář ◽  
F. Klimeš ◽  
R. Ledvina ◽  
S. Kužel

A new method was proposed that complements the value of active carbon in the soil expressed as hot-water soluble carbon Chws. The method is based on vacuum measurements of biochemical oxygen demand (BOD) of soil suspensions using an Oxi Top Control system manufactured by the WTW Merck Company that is destined for hydrochemical analyses of organically contaminated waters. Measurements will provide BOD values for particular days of incubation; total limit BODt can be determined from these values, and it is possible to calculate the rate constant k1 of mineralization of a decomposable part of soil organic matter. It is typical of soil organic matter (SOM) of a given soil sample and comparable with the BOD5:COD (chemical oxygen demand) ratio that is used to evaluate degradability of water organic contamination in hydrochemical analytics.


2012 ◽  
Vol 36 (4) ◽  
pp. 1179-1188 ◽  
Author(s):  
Jader Galba Busato ◽  
Tairone Paiva Leão ◽  
Marihus Altoé Baldotto ◽  
Luciano Pasqualoto Canellas

Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.


1962 ◽  
Vol 54 (5) ◽  
pp. 470-470
Author(s):  
T. M. McCalla

Sign in / Sign up

Export Citation Format

Share Document