Response to “Comments on ‘Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer-TDR Moisture Probe’ and ‘A Dynamic Cone Penetrometer for Measuring Soil Penetration Resistance’”

2005 ◽  
Vol 69 (3) ◽  
pp. 927-929 ◽  
Author(s):  
Rubismar Stolf ◽  
Klaus Reichardt ◽  
Carlos M. P. Vaz
2018 ◽  
Vol 1 (2) ◽  
pp. 238-243
Author(s):  
Taufik Rizaldi ◽  
Sumono Sumono

Penelitian dilakukan di Desa Lubuk Bayas Kecapamatan Perbaungan Kabupaten Serdang Bedagai pada lahan sawah bertekstur lempung berpasir dengan kadar air 49.17% dan dry bulk density 1.26 g/cm3. Tahanan penetrasi tanah ditentukan melalui pengukuran tahanan penetrasi plat dengan menggunakan penetrometer secara langsung di sawah. Pengukuran dilakukan dengan ukuran plat 5x5 cm2, 5x10 cm2, 5x15 cm2 dan 5x20 cm2. Sudut penekanan 90o, 75o, 60o, 45o, 30o dan kedalaman penekanan 4 cm, 8 cm, 12 cm, 16 cm dan 20 cm. Dari hasil pengukuran diperoleh bahwa semakin besar ukuran plat maka gaya penekanan semakin besar namun tahanan penetrasi tanah semakin kecil. Sedangkan semakin dalam plat masuk ke tanah maka tahanan penetrasi tanah semakin besar. Semakin besar sudut penekanan tahanan penetrasi tanah semakin besar. Untuk ukuran plat, sudut tekan dan kedalaman penekanan plat yang sama pada kedalaman lumpur yang berbeda akan menghasilkan gaya penekanan dan tahanan penetrasi tanah yang berbeda. The study was conducted in Lubuk Bayas Village, Perbaungan Subdistrict, Serdang Bedagai District, in paddy fields with sandy clay texture with a water content of 49.17% and dry bulk density of 1.26 g / cm3. Soil penetration resistance iwas determined by measuring plate penetration resistance using a penetrometer directly in the rice field. Measurements were made with a plate size of 5x5 cm2, 5x10 cm2, 5x15 cm2 and 5x20 cm2. The angle of emphasis was 90o, 75o, 60o, 45o, 30o and the depth of emphasis was 4 cm, 8 cm, 12 cm, 16 cm and 20 cm. Results showed that the larger the plate size found, the greater the compressive force, but the penetration resistance of the soil got smaller. Whereas the deeper the plate entered the ground, the greater the penetration resistance of the soil occurred. The greater the angle of suppression the greater the penetration penetration of the soil. For the plate size, the pressure angle and depth of the same plate compression at different mud depths will result in a different force of suppression and soil penetration resistance.


2013 ◽  
Vol 77 (5) ◽  
pp. 1488-1495 ◽  
Author(s):  
Carlos M. P. Vaz ◽  
Juliana M. Manieri ◽  
Isabella C. de Maria ◽  
Martinus Th. van Genuchten

Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 391 ◽  
Author(s):  
C Henderson ◽  
A Levett ◽  
D Lisle

Quantitative models to predict the effects of soil compaction on wheat yields are being developed for the northern sandplains of Western Australia. An understanding of the relationships between soil water content (W), bulk density (p), compactibility and soil penetration resistance (P) is required. Thirteen subsoils from W.A. sandplain soils were tested for compactibility. As the amounts of very coarse sand or clay in the soil increased, the maximum density (�max.) achieved with a standard compactive effort also increased, while the critical soil water content (Wcrit,.) for maximum compactibility declined. The effects of p and W on P were investigated for five of the soils. The value of P was only slightly affected as W was reduced to less than 70% of the field capacity water content. As the soils were dried further, P increased exponentially. At all water contents, an increase in p was found to markedly increase P. Particle size distribution could be used to predict �max. and Wcrit., but could not be related to the effects of changes in p and W on P. The implications for the measurement and effects of soil compaction in the field are discussed.


Geoderma ◽  
2011 ◽  
Vol 166 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Carlos M.P. Vaz ◽  
Juliana M. Manieri ◽  
Isabella C. de Maria ◽  
Markus Tuller

Sign in / Sign up

Export Citation Format

Share Document