Chloride and Lithium Transport in Large Arrays of Undisturbed Silt Loam and Sandy Loam Soil Columns

2004 ◽  
Vol 3 (1) ◽  
pp. 316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride
2004 ◽  
Vol 3 (1) ◽  
pp. 316-316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

2003 ◽  
Vol 2 (4) ◽  
pp. 715 ◽  
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

2004 ◽  
Vol 3 (1) ◽  
pp. 316-316 ◽  
Author(s):  
M. S. Akhtar ◽  
T. S. Steenhuis ◽  
B. K. Richards ◽  
M. B. McBride

2003 ◽  
Vol 2 (4) ◽  
pp. 715-727 ◽  
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

Weed Science ◽  
1985 ◽  
Vol 33 (2) ◽  
pp. 229-232 ◽  
Author(s):  
D. J. Rydrych

Preemergence and postemergence application of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazine-5(4H)-one] at 0.6 and 1.1 kg ai/ha controlled downy brome (Bromus tectorumL. ♯ BROTE) in winter wheat (Triticum aestivumL. ‘McDermid’) but caused considerable injury without the use of activated carbon over the seeded row. Activated carbon applied in 5-cm bands over the seeded row at 84, 167, and 336 kg/ha protected winter wheat at Pendleton on a silt loam soil. On a sandy loam soil, only a 336 kg/ha rate provided protection from metribuzin. Metribuzin toxicity to winter wheat was more difficult to neutralize when applied preemergence. Downy brome control was not reduced by carbon applied over the wheat row. The best treatment in this study was carbon at 336 kg/ha applied preemergence over the row followed by metribuzin at 0.6 or 1.1 kg/ha postemergence. A 10-week delay between preemergence carbon banding and postemergence metribuzin protected winter wheat from chemical injury.


2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


1998 ◽  
Vol 27 (6) ◽  
pp. 1495-1503 ◽  
Author(s):  
H. Jonge ◽  
O. H. Jacobsen ◽  
L. W. Jonge ◽  
P. Moldrup

1981 ◽  
Vol 61 (2) ◽  
pp. 401-407 ◽  
Author(s):  
E. J. HOGUE ◽  
A. GAUNCE ◽  
S. U. KHAN

The mobility of four residual orchard herbicides, diuron, dichlobenil, simazine and terbacil was compared in soil columns using a sandy loam and loam soil common to the Okanagan Valley. Mobility for all herbicides was greater in the sandy loam than loam soil. Dichlobenil was least mobile in the soil columns followed by diuron, simazine then terbacil. No dichlobenil was leached through the 30-cm sandy loam soil column with 120 cm of water but 40 cm of water leached more than half of the terbacil. More dichlobenil was converted to the water-soluble 2,6-dichlorobenzamide in the loam soil than in the sandy soil. This metabolite is water-soluble and was partially leached through the loam soil column with the highest level of irrigation.


Weed Science ◽  
1997 ◽  
Vol 45 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Nicholas D. Polge ◽  
Michael Barrett

Growth chamber experiments were conducted to determine the effects of soil temperature on the response of corn to imazaquin soil residues. In a silt loam soil, 24/30 C (night/day) or 18/24 C soil temperatures caused greater inhibition of shoot growth than 12/18 C soil temperature. However, in a sandy loam soil, inhibition of corn shoot growth was maximal at 18/24 C, and there was no difference in shoot-growth inhibition between the lowest and highest temperatures. Higher soil temperatures caused greater root-growth inhibition in the sandy loam soil but not in silt loam soil. Soil temperature did not affect14C-imazaquin uptake from either soil. Higher soil temperatures increased the translocation of imazaquin from root to shoot tissue in both soils. In the sandy loam soil, imazaquin metabolism in root tissue decreased as soil temperature increased, with twice as much parent herbicide recovered from roots of plants grown under the highest compared with the lowest temperature treatments. Soil temperature had no effect on imazaquin metabolism in shoot tissue. Longer-term experiments (22 d) were conducted with the sandy loam soil to determine the effect of changes in air temperature on corn response to imazaquin soil residues. Plants exposed to 24/30 C for 7 or 14 d of the final 14-d growing period showed greater inhibition of shoot growth compared with plants maintained at 12/18 C. Uptake and translocation of14C-imazaquin to shoots was greater in plants maintained at 24/30 C throughout the final 14-d period than in plants maintained at 12/18 C. Plants grown for 7 d at 24/30 C during the final 14-d period either preceding or following 7 d growth at 12/18 C showed increased translocation of imazaquin to shoots but no difference in imazaquin uptake compared with plants maintained at 12/18 C. Neither air nor soil temperature treatments had any effect on imazaquin concentration in soil water.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 636
Author(s):  
J. M. Xue ◽  
P. W. Clinton ◽  
R. Sands ◽  
T. W. Payn ◽  
M. F. Skinner

Biuret (C2H5N3O2) priming effect on mineralisation of native soil N has not been precisely quantified in previous studies, although it is a potential microbial activity regulator and slow-release N fertiliser. Following application of biuret at concentrations of 0 (B0) and 100 (B100) mg/kg (oven-dried) soil, we measured the dynamics of biuret-derived 15N in soil N pools, soil C mineralisation, and microbial biomass C in a sandy loam and a silt loam during a 112-day-long incubation to investigate the fate of biuret 15N and its effect on net mineralisation of native soil N. Biuret was decomposed faster in the sandy loam soil than the silt loam soil. In the sandy loam soil, the stabilised N pool was a strong sink for the biuret-derived 15N and accumulated about half of the applied 15N at the end of incubation. In the silt loam soil, 68% of the 15N applied was recovered in the NO3−-N pool and the stabilised N pool accumulated only about 25% of the applied 15N at the end of incubation. Biuret addition increased the turnover rate constant of soil organic matter and caused a real priming effect on net mineralisation of native soil N in both soils. The additional mineralisation of native soil N was 20.1 mg/kg (equivalent to 27.3 kg N/ha) in the sandy loam soil and 20.5 mg/kg (equivalent to 57.3 kg N/ha) in the silt loam soil. Biuret priming effect was related to the acceleration of soil organic matter decomposition by increased microbial activity at an early stage and the death/decay of microbes at a later stage of incubation. The native soil N released through the priming effect was partially from soil non-biomass organic matter and partially from soil microbial biomass.


Sign in / Sign up

Export Citation Format

Share Document