Trinomial or Binomial: Accelerating American Put Option Price on Trees

2008 ◽  
Author(s):  
Jiun Hong Chan ◽  
Mark S. Joshi ◽  
Robert Tang ◽  
Chao Yang
Author(s):  
Perpetual Andam Boiquaye

This paper focuses primarily on pricing an American put option with a fixed term where the price process is geometric mean-reverting. The change of measure is assumed to be incorporated. Monte Carlo simulation was used to calculate the price of the option and the results obtained were analyzed. The option price was found to be $94.42 and the optimal stopping time was approximately one year after the option was sold which means that exercising early is the best for an American put option on a fixed term. Also, the seller of the put option should have sold $0.01 assets and bought $ 95.51 bonds to get the same payoff as the buyer at the end of one year for it to be a zero-sum game. In the simulation study, the parameters were varied to see the influence it had on the option price and the stopping time and it showed that it either increases or decreases the value of the option price and the optimal stopping time or it remained unchanged.


2012 ◽  
Vol 12 (1) ◽  
pp. 108-120
Author(s):  
David Šiška

Abstract Finite difference approximations to multi-asset American put option price are considered. The assets are modelled as a multi-dimensional diffusion process with variable drift and volatility. Approximation error of order one quarter with respect to the time discretisation parameter and one half with respect to the space discretisation parameter is proved by reformulating the corresponding optimal stopping problem as a solution of a degenerate Hamilton-Jacobi-Bellman equation. Furthermore, the error arising from restricting the discrete problem to a finite grid by reducing the original problem to a bounded domain is estimated.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shuang Li ◽  
Yanli Zhou ◽  
Xinfeng Ruan ◽  
B. Wiwatanapataphee

We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP) for American option price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence of market volatility on the price of American options.


2014 ◽  
Vol 2 (5) ◽  
pp. 401-410
Author(s):  
Zhao Yin ◽  
Chang Tan

AbstractThis paper mainly studies the American put option pricing with transaction costs in the CEV process. The specific Crank-Nicolson form of numerical solution is obtained by the finite difference method. On this basis, Hong Kong stock CKH option is selected as the object to estimate option price. Finally, by comparing with the actual price, the American put option pricing model is verified as reasonable. This paper is significant to the rational pricing and the institutional construction of the upcoming stock options in mainland China.


2011 ◽  
Vol 14 (08) ◽  
pp. 1279-1297 ◽  
Author(s):  
SONG-PING ZHU ◽  
WEN-TING CHEN

In this paper, we present a correction to Merton (1973)'s well-known classical case of pricing perpetual American put options by considering the same pricing problem under a stochastic volatility model with the assumption that the volatility is slowly varying. Two analytic formulae for the option price and the optimal exercise price of a perpetual American put option are derived, respectively. Upon comparing the results obtained from our analytic approximations with those calculated by a spectral collocation method, it is shown that our current approximation formulae provide fast and reasonably accurate numerical values of both option price and the optimal exercise price of a perpetual American put option, within the validity of the assumption we have made for the asymptotic expansion. We shall also show that the range of applicability of our formulae is remarkably wider than it was initially aimed for, after the original assumption on the order of the "volatility of volatility" being somewhat relaxed. Based on the newly-derived formulae, the quantitative effect of the stochastic volatility on the optimal exercise strategy of a perpetual American put option has also been discussed. A most noticeable and interesting result is that there is a special cut-off value for the spot variance, below which a perpetual American put option priced under the Heston model should be held longer than the case of the same option priced under the traditional Black-Scholes model, when the price of the underlying is falling.


2009 ◽  
Vol 29 (9) ◽  
pp. 826-839 ◽  
Author(s):  
Jiun Hong Chan ◽  
Mark Joshi ◽  
Robert Tang ◽  
Chao Yang

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yanli Zhou ◽  
Shican Liu ◽  
Shuang Li ◽  
Xiangyu Ge

It has been found that the surface of implied volatility has appeared in financial market embrace volatility “Smile” and volatility “Smirk” through the long-term observation. Compared to the conventional Black-Scholes option pricing models, it has been proved to provide more accurate results by stochastic volatility model in terms of the implied volatility, while the classic stochastic volatility model fails to capture the term structure phenomenon of volatility “Smirk.” More attempts have been made to correct for American put option price with incorporating a fast-scale stochastic volatility and a slow-scale stochastic volatility in this paper. Given that the combination in the process of multiscale volatility may lead to a high-dimensional differential equation, an asymptotic approximation method is employed to reduce the dimension in this paper. The numerical results of finite difference show that the multiscale volatility model can offer accurate explanations of the behavior of American put option price.


Stochastics ◽  
2007 ◽  
Vol 79 (1-2) ◽  
pp. 5-25 ◽  
Author(s):  
P. Babilua ◽  
I. Bokuchava ◽  
B. Dochviri ◽  
M. Shashiashvili

Sign in / Sign up

Export Citation Format

Share Document