Performance Estimation of Modified Savonius Wind Turbine Blade Profile

Author(s):  
Prashant Baredar ◽  
Bhupendra Gupta
2005 ◽  
Vol 30 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Badreddine Kamoun ◽  
David Afungchui ◽  
Alain Chauvin

This article predominantly focuses on the performance estimation of a small wind turbine blade when a dimple arrangement is made along its upper surface. The dimple arrangement is grooved at two locations: 0.25c and 0.5c, where c is the chord length of the turbine blade. A CFD analysis using the k-ε turbulence model is carried out on the selected blade sections NREL S823 and S822. The continuity and momentum equations are solved using ANSYS Fluent Solver to assess the aerodynamic performance of the proposed design. The effect of introducing a dimple on the blade surface has shown to delay the flow separation, with the formation of vortices. Further, the overall performance of the blade is simulated using GH BLADED and the results acquired are discussed.


2017 ◽  
Vol 863 ◽  
pp. 229-234
Author(s):  
Muhammad S. Virk

A multiphase numerical study has been carried out to understand the effects of wind turbine blade profile (airfoil) symmetry on resultant ice accretion. Two symmetric (NACA 0006 & 0012) and two non-symmetric airfoils (NACA 23012 & N-22) were used for this preliminary study. Based upon the airflow field calculations and super cooled water droplets collision efficiency, the rate and shape of accreted ice was simulated for rime ice conditions. Analysis showed higher air velocity along top surface of the non-symmetric airfoils as compared to symmetrical airfoils that also effects the droplet behavior and resultant ice growth. Results show that change in blade profile symmetry effects the resultant ice accretion. For symmetric airfoils, more streamlines ice shapes were observed along leading edge as compared to non- symmetric airfoils.


2016 ◽  
Vol 4 (50) ◽  
Author(s):  
V. M. Sineglazov ◽  
A. A. Ziganshin ◽  
M. P. Vasylenko

Sign in / Sign up

Export Citation Format

Share Document