Wind turbine blade profile thickness effects on atmospheric ice accretion

Author(s):  
Muhammad S. Virk
2017 ◽  
Vol 863 ◽  
pp. 229-234
Author(s):  
Muhammad S. Virk

A multiphase numerical study has been carried out to understand the effects of wind turbine blade profile (airfoil) symmetry on resultant ice accretion. Two symmetric (NACA 0006 & 0012) and two non-symmetric airfoils (NACA 23012 & N-22) were used for this preliminary study. Based upon the airflow field calculations and super cooled water droplets collision efficiency, the rate and shape of accreted ice was simulated for rime ice conditions. Analysis showed higher air velocity along top surface of the non-symmetric airfoils as compared to symmetrical airfoils that also effects the droplet behavior and resultant ice growth. Results show that change in blade profile symmetry effects the resultant ice accretion. For symmetric airfoils, more streamlines ice shapes were observed along leading edge as compared to non- symmetric airfoils.


2005 ◽  
Vol 30 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Badreddine Kamoun ◽  
David Afungchui ◽  
Alain Chauvin

2020 ◽  
pp. 0309524X2093394
Author(s):  
Adeel Yousuf ◽  
Jia Yi Jin ◽  
Pavlo Sokolov ◽  
Muhammad S Virk

Atmospheric icing has been recognized as hindrance in proper utilization of good wind resources in cold regions. There is a growing need to better understand the ice accretion physics along wind turbine blades to improve its performance and for optimal design of anti/de-icing system. This article describes a study of ice accretion along wind turbine blade profiles using thermal infrared imaging. Surface temperature distribution along four different blade profile surfaces is studied at different operating conditions. Analysis shows that surface temperature distribution along blade profile surface during ice accretion process is a dynamic process and change in atmospheric conditions and blade geometric characteristics significantly affects the surface temperature and resultant ice accretion. The effect of blade geometry on ice accretion is more prominent in case of wet ice conditions due to low freezing fraction and water run back along blade profile surface.


Sign in / Sign up

Export Citation Format

Share Document