Disrupted Control of Origin Activation Promotes Genomic Instability Upon Loss of the Pole4 and Trp53 Tumour Suppressors

2021 ◽  
Author(s):  
Valerie Borel ◽  
Stefan Boeing ◽  
Niek Van Wietmarschen ◽  
Sriram Sridharan ◽  
Jimena Perez-Lloret ◽  
...  
1996 ◽  
Vol 93 ◽  
pp. 157-164 ◽  
Author(s):  
JB Little ◽  
C Li ◽  
H Nagasawa ◽  
T Pfenning ◽  
H Vetrovs
Keyword(s):  

2008 ◽  
Vol 31 (4) ◽  
pp. 19
Author(s):  
I Pasic ◽  
A Shlien ◽  
A Novokmet ◽  
C Zhang ◽  
U Tabori ◽  
...  

Introduction: OS, a common Li-Fraumeni syndrome (LFS)-associated neoplasm, is a common bone malignancy of children and adolescents. Sporadic OS is also characterized by young age of onset and high genomic instability, suggesting a genetic contribution to disease. This study examined the contribution of novel DNA structural variation elements, CNVs, to OS susceptibility. Given our finding of excessive constitutional DNA CNV in LFS patients, which often coincide with cancer-related genes, we hypothesized that constitutional CNV may also provide clues about the aetiology of LFS-related sporadic neoplasms like OS. Methods: CNV in blood DNA of 26 patients with sporadic OS was compared to that of 263 normal control samples from the International HapMap project, as well as 62 local controls. Analysis was performed on DNA hybridized to Affymetrix genome-wide human SNP array 6.0 by Partek Genomic Suite. Results: There was no detectable difference in average number of CNVs, CNV length, and total structural variation (product of average CNV number and length) between individuals with OS and controls. While this data is preliminary (small sample size), it argues against the presence of constitutional genomic instability in individuals with sporadic OS. Conclusion: We found that the majority of tumours from patients with sporadic OS show CN loss at chr3q13.31, raising the possibility that chr3q13.31 may represent a “driver” region in OS aetiology. In at least one OS tumour, which displays CN loss at chr3q13.31, we demonstrate decreased expression of a known tumour suppressor gene located at chr3q13.31. We are investigating the role ofchr3q13.31 in development of OS.


Sign in / Sign up

Export Citation Format

Share Document