histone h2ax
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 50)

H-INDEX

59
(FIVE YEARS 5)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7198
Author(s):  
Adalberto Merighi ◽  
Nadia Gionchiglia ◽  
Alberto Granato ◽  
Laura Lossi

The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.


2021 ◽  
Author(s):  
Yue Liu ◽  
Haojian Li ◽  
Crystal Wilson ◽  
Hui Jen Bai ◽  
Myriem Boufraqech ◽  
...  

Abstract Genomic stability is essential for organismal development, cellular homeostasis, and survival. The DNA double-strand breaks are particularly deleterious, creating an environment prone to cellular transformation and oncogenic activation. The histone variant H2AX is an essential component of the nucleosome responsible for initiating the early steps of the DNA repair process. H2AX maintains genomic stability by initiating a signaling cascade that collectively functions to promote DNA double-strand breaks repair. Recent advances have linked genomic stability to energetic metabolism, and alterations in metabolism were found to interfere with genome maintenance. Utilizing genome-wide transcripts profiling to identify differentially-expressed genes involved in energetic metabolism, we compared control and H2AX-deficient metastatic breast cancer cell lines, and found that H2AX loss leads to the repression of key genes regulating glycolysis, with a prominent effect on hexokinase-2 (HK2). These observations are substantiated by evidence that H2AX loss compromises glycolysis, effect which was reversed by ectopic expression of HK2. Utilizing models of experimental metastasis, we found that H2AX silencing halts progression of metastatic breast cancer cells MDA-MB-231. Most interestingly, ectopic expression of HK2 in H2AX-deficient cells restores their metastatic potential. Using multiple publicly available datasets, we found a significantly strong positive correlation between H2AX expression levels in patients with invasive breast cancer, and levels of glycolysis genes, particularly HK2. These observations are consistent with the evidence that high H2AX expression is associated with shorther distant metastasis-free survival. Our findings reveal a role for histone H2AX in controlling the metastatic ability of breast cancer cells via maintenance of HK2-driven glycolysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Robin Sebastian ◽  
Mirit I. Aladjem ◽  
Philipp Oberdoerffer

Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Kuno ◽  
R Hosoda ◽  
Y Horio

Abstract Background Doxorubicin induces DNA damage not only in tumor cells but also in the cardiomyocyte, and accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. We previously found that cardiomyocyte-specific deletion of SIRT1, a NAD+-dependent histone/protein deacetylase, worsens doxorubicin-induced cardiotoxicity in mice. However, its molecular mechanism remains unclear. Phosphorylation of histone H2AX at Ser139 catalyzed by ATM (mutated in ataxia-telangiectasia) at the sites of DNA damage is a critical mediator for DNA repair. Purpose Here, we tested the hypothesis that deacetylation of H2AX by SIRT1 mediates DNA damage response to counteract doxorubicin-induced cardiotoxicity. Methods and results Wild-type (WT) mice and tamoxifen-inducible cardiomyocyte-specific SIRT1 knockout (SIRT1-cKO) mice at 3 month of age received doxorubicin (4 IP injections of 5 mg/kg/week) or a vehicle. Immunoblotting of myocardial lysates from mice 1 week after final doxorubicin showed that doxorubicin increased phospho-Ser139-H2AX level by 1.6-fold in WT, but such a response was blunted in SIRT1-cKO. Ser1981-phosphorylations of ATM induced by doxorubicin were similar in WT and SIRT1-cKO. DNA fragmentation evaluated by TUNEL staining revealed that the increase in TUNEL-positive nuclei by doxorubicin was more in SIRT1-cKO (0.13% to 0.38%) than those in WT (0.07% to 0.19%), suggesting higher DNA damage in SIRT1-cKO. In H9c2 cardiomyocytes, knockdown of SIRT1 also abolished the doxorubicin-induced Ser139-phosphorylation of H2AX without changing phospho-ATM levels. Increases in DNA damage evaluated by comet assay and cleavage of caspase-3 by doxorubicin were also enhanced in SIRT1-knockdown cells. Immunostaining for acetyl-Lys5-H2AX in the heart sections revealed that acetyl-Lys5-H2AX levels were increased in SIRT1-cKO by 58% compared with those in WT. In H9c2 cells, acetyl-Lys5-H2AX level was also increased by SIRT1 knockdown and reduced by expression of wild-type SIRT1. To test the role of the increased acetyl-Lys5-H2AX level under SIRT1 inhibition, we generated a mutant in which Lys5 was substituted to glutamine (K5Q H2AX) as a mimic of acetylated Lys5. In COS7 cells expressing WT or K5Q H2AX, Ser139-phosphorylation induced by doxorubicin was suppressed in K5Q mutant. In addition, doxorubicin-induced cleavage of caspase-3 was enhanced in H9c2 cells expressing K5Q H2AX as well as S139A H2AX, that cannot be phosphorylated at Ser139, compared with cells expressing WT H2AX. Conclusions These findings suggest that the increased Lys5 acetylation of H2AX via SIRT1 inhibition interferes Ser139 phosphorylation, leading to accumulation of damaged DNA and promotion of the apoptotic response. Such regulation of the DNA damage response contributes to protection by SIRT1 against doxorubicin-induced cardiotoxicity. FUNDunding Acknowledgement Type of funding sources: None.


Author(s):  
Marina Rodriguez-Muñoz ◽  
Martina Serrat ◽  
David Soler ◽  
Anna Genescà ◽  
Teresa Anglada

Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability. We report that bridges may break during mitosis or may remain unbroken until the next interphase. During mitosis, we frequently observed discontinuities in the bridging chromatin, and our results strongly suggest that a substantial fraction of chromosome bridges are broken during this stage of the cell cycle. This notion is supported by the observation that the chromatin flanking mitotic bridge discontinuities is often decorated with the phosphorylated form of the histone H2AX, a marker of DNA breaks, and by MDC1, an early mediator of the cell response to DNA breaks. Also, free 3′OH DNA ends were detected in more than half of the bridges during the final stages of cell division. However, even if detected, the DNA ends of broken bridges are not repaired in mitosis. To investigate whether mitotic bridge breakage depends on mechanical stress, we used experimental models in which chromosome bridges with defined geometry are formed. Although there was no association between spindle pole separation or the distance among non-bridge kinetochores and bridge breakage, we found a direct correlation between the distance between bridge kinetochores and bridge breakage. Altogether, we conclude that the discontinuities observed in bridges during mitosis frequently reflect a real breakage of the chromatin and that the mechanisms responsible for chromosome bridge breakage during mitosis may depend on the separation between the bridge kinetochores. Considering that previous studies identified mechanical stress or biochemical digestion as possible causes of bridge breakage in interphase cells, a multifactorial model emerges for the breakage of chromosome bridges that, according to our results, can occur at different stages of the cell cycle and can obey different mechanisms.


2021 ◽  
Vol 43 (2) ◽  
pp. 1133-1141
Author(s):  
Kaori Tsutsumi ◽  
Moe Masuda ◽  
Hiroyuki Date

Altered gene expression is a common feature of tumor cells after irradiation. Our previous study showed that this phenomenon is not only an acute response to cytotoxic stress, instead, it was persistently detected in tumor cells that survived 10 Gy irradiation (IR cells). The current understanding is that DNA double-strand breaks (DSBs) are recognized by the phosphorylation of histone H2AX (H2AX) and triggers the ataxia-telangiectasia mutated (ATM) protein or the ATM- and Rad3-related (ATR) pathway, which activate or inactivate the DNA repair or apoptotic or senescence related molecules and causes the expression of genes in many instances. However, because changes in gene expression persist after passaging in IR cells, it may be due to the different pathways from these transient intracellular signaling pathways caused by DSBs. We performed microarray analysis of 30,000 genes in radiation-surviving cells (H1299-IR and MCF7-IR) and found an interesting relation between altered genes and their chromosomal loci. These loci formed a cluster on the chromosome, especially on 1q21 and 6p21-p22 in both irradiated cell lines. These chromosome sites might be regarded as “radio-fragile” sites.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3317
Author(s):  
Eric Moeglin ◽  
Dominique Desplancq ◽  
Audrey Stoessel ◽  
Christian Massute ◽  
Jeremy Ranniger ◽  
...  

Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.


Author(s):  
Anar Tulyaeva Anar Tulyaeva ◽  
Gulmira Zhurabekova Gulmira Zhurabekova ◽  
Erbol Bekmukhambetov Erbol Bekmukhambetov ◽  
Erbolat Iztleuov Erbolat Iztleuov ◽  
Aidana Tautanova Aidana Tautanova

Relevance: Gastric cancer all over the world is ranked 4th in morbidity and 2nd in mortality [1], which is one of the most important social problems of society. GC is a complex disease that causes factors of environmental and host factors, causing factors that contribute to high mortality of gastric cancer, including its silent course, late clinical manifestations and underlying biological and genetic heterogeneity. Given the tacit and aggressive nature of gastric cancer, patients seek medical help in advanced stages. Modern science, having the opportunity to study methods for the study of oncological pathology, requires the search for diagnostic methods and the introduction of new personalized methods and monitoring in the treatment of oncological diseases. Phosphorylation of histone H2AX on Serine IY residues with the endpoint Carboxyl (which produces yH2AX) is a sensitive marker for DNA double-strand break (DSB) repair. Double-strand DNA breaks cause severe damage that can cause genomic instability, resulting in cancer [2,3] [4] Diseases of a person with defects in these processes often exhibit a predisposition to cancer [5]. A key component in DNA repair is the histone H2AX protein, which rapidly becomes phosphorylated at Serine IY residues from the carboxyl endpoint (Carboxyl endpoint) (Serina c-IY) in order to form yH2AX at the appropriate sites of the DB. Within 30 minutes after DB formation, a large number of yH2AX molecules form in chromatin around the site of decomposition, forming a focus where proteins involved in DNA repair and accumulation of chromatin remodeling are accumulated [6] This Amplification enables to detect individual DB with an anti-yH2AX antibody.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Bernadett Szikriszt ◽  
Ádám Póti ◽  
Eszter Németh ◽  
Nnennaya Kanu ◽  
Charles Swanton ◽  
...  

Abstract Platinum-based drugs are a mainstay of cancer chemotherapy. However, their mutagenic effect can increase tumour heterogeneity, contribute to the evolution of treatment resistance, and also induce secondary malignancies. We coupled whole genome sequencing with phenotypic investigations on two cell line models to compare the magnitude and examine the mechanism of mutagenicity of cisplatin, carboplatin and oxaliplatin. Cisplatin induced significantly more base substitution mutations than carboplatin or oxaliplatin when used at equitoxic concentrations on human TK6 or chicken DT40 cells, and also induced the highest number of short insertions and deletions. The analysis of base substitution spectra revealed that all three tested platinum drugs elicit both a direct mutagenic effect at purine dinucleotides, and an indirect effect of accelerating endogenous mutagenic processes. Whereas the direct mutagenic effect appeared to correlate with the level of DNA damage caused as assessed through histone H2AX phosphorylation and single cell agarose gel electrophoresis, the indirect mutagenic effects were equal. The different mutagenicity and DNA damaging effect of equitoxic platinum drug treatments suggests that DNA damage independent mechanisms significantly contribute to their cytotoxicity. Thus, the comparatively high mutagenicity of cisplatin should be taken into account in the design of chemotherapeutic regimens.


Sign in / Sign up

Export Citation Format

Share Document