scholarly journals Lusternik–Schnirelmann category of spaces with free fundamental group

2007 ◽  
Vol 7 (4) ◽  
pp. 1805-1808 ◽  
Author(s):  
Jeffrey Strom
2019 ◽  
Vol 149 (6) ◽  
pp. 1453-1463
Author(s):  
Petar Pavešić

AbstractWe study lower bounds for the number of vertices in a PL-triangulation of a given manifold M. While most of the previous estimates are based on the dimension and the connectivity of M, we show that further information can be extracted by studying the structure of the fundamental group of M and applying techniques from the Lusternik-Schnirelmann category theory. In particular, we prove that every PL-triangulation of a d-dimensional manifold (d ⩾ 3) whose fundamental group is not free has at least 3d + 1 vertices. As a corollary, every d-dimensional homology sphere that admits a combinatorial triangulation with less than 3d vertices is PL-homeomorphic to Sd. Another important consequence is that every triangulation with small links of M is combinatorial.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel C. Cohen ◽  
Lucile Vandembroucq

Abstract We find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamental group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map Δ : M → M × M {\Delta:M\to M\times M} for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds.


2013 ◽  
Vol 50 (1) ◽  
pp. 31-50
Author(s):  
C. Zhang

The purpose of this article is to utilize some exiting words in the fundamental group of a Riemann surface to acquire new words that are represented by filling closed geodesics.


Author(s):  
Ahmed Abbes ◽  
Michel Gros

This chapter continues the construction and study of the p-adic Simpson correspondence and presents the global aspects of the theory of representations of the fundamental group and the torsor of deformations. After fixing the notation and general conventions, the chapter develops preliminaries and then introduces the results and complements on the notion of locally irreducible schemes. It also fixes the logarithmic geometry setting of the constructions and considers a number of results on the Koszul complex. Finally, it develops the formalism of additive categories up to isogeny and describes the inverse systems of a Faltings ringed topos, with a particular focus on the notion of adic modules and the finiteness conditions adapted to this setting. The chapter rounds up the discussion with sections on Higgs–Tate algebras and Dolbeault modules.


2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


Sign in / Sign up

Export Citation Format

Share Document