scholarly journals On the topological complexity of manifolds with abelian fundamental group

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel C. Cohen ◽  
Lucile Vandembroucq

Abstract We find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamental group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map Δ : M → M × M {\Delta:M\to M\times M} for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds.

2019 ◽  
Vol 149 (6) ◽  
pp. 1453-1463
Author(s):  
Petar Pavešić

AbstractWe study lower bounds for the number of vertices in a PL-triangulation of a given manifold M. While most of the previous estimates are based on the dimension and the connectivity of M, we show that further information can be extracted by studying the structure of the fundamental group of M and applying techniques from the Lusternik-Schnirelmann category theory. In particular, we prove that every PL-triangulation of a d-dimensional manifold (d ⩾ 3) whose fundamental group is not free has at least 3d + 1 vertices. As a corollary, every d-dimensional homology sphere that admits a combinatorial triangulation with less than 3d vertices is PL-homeomorphic to Sd. Another important consequence is that every triangulation with small links of M is combinatorial.


2010 ◽  
Vol 147 (2) ◽  
pp. 649-660 ◽  
Author(s):  
Daniel C. Cohen ◽  
Michael Farber

AbstractThe topological complexity$\mathsf {TC}(X)$is a numerical homotopy invariant of a topological spaceXwhich is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category ofX. Given a mechanical system with configuration spaceX, the invariant$\mathsf {TC}(X)$measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space ofndistinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.


Author(s):  
Jesús González ◽  
Mark Grant ◽  
Lucile Vandembroucq

Abstract We develop a theory of generalized Hopf invariants in the setting of sectional category. In particular, we show how Hopf invariants for a product of fibrations can be identified as shuffle joins of Hopf invariants for the factors. Our results are applied to the study of Farber’s topological complexity for two-cell complexes, as well as to the construction of a counterexample to the analogue for topological complexity of Ganea’s conjecture on Lusternik–Schnirelmann category.


2018 ◽  
Vol 12 (02) ◽  
pp. 293-319 ◽  
Author(s):  
Michael Farber ◽  
Stephan Mescher

The well-known theorem of Eilenberg and Ganea [Ann. Math. 65 (1957) 517–518] expresses the Lusternik–Schnirelmann category of an Eilenberg–MacLane space [Formula: see text] as the cohomological dimension of the group [Formula: see text]. In this paper, we study a similar problem of determining algebraically the topological complexity of the Eilenberg–MacLane spaces [Formula: see text]. One of our main results states that in the case when the group [Formula: see text] is hyperbolic in the sense of Gromov, the topological complexity [Formula: see text] either equals or is by one larger than the cohomological dimension of [Formula: see text]. We approach the problem by studying essential cohomology classes, i.e. classes which can be obtained from the powers of the canonical class (as defined by Costa and Farber) via coefficient homomorphisms. We describe a spectral sequence which allows to specify a full set of obstructions for a cohomology class to be essential. In the case of a hyperbolic group, we establish a vanishing property of this spectral sequence which leads to the main result.


Author(s):  
Andrew J. Nicas

A closed aspherical manifold is a closed manifold whose universal covering space is contractible. There is the following conjecture concerning the algebraic K-theory of such manifolds:Conjecture. Let Γ be the fundamental group of a closed aspherical manifold. Then Whi(Γ) = 0 for i ≥ 0 where Whi(Γ) is the i-th higher Whitehead group of Γ.


2016 ◽  
Vol 26 (07) ◽  
pp. 1283-1321
Author(s):  
Shane O. Rourke

Let [Formula: see text] be an ordered abelian group. We show how a group admitting a free affine action without inversions on a [Formula: see text]-tree admits a natural graph of groups decomposition, where vertex groups inherit actions on [Formula: see text]-trees. We introduce a stronger condition (essential freeness) on an affine action and apply recent work of various authors to deduce that a finitely generated group admitting an essentially free affine action on a [Formula: see text]-tree is relatively hyperbolic with nilpotent parabolics, is locally relatively quasiconvex, and has solvable word, conjugacy and isomorphism problems. Conversely, given a graph of groups satisfying certain conditions, we show how an affine action of its fundamental group can be constructed. Specialising to the case of free affine actions, we obtain a large class of groups that have a free affine action on a [Formula: see text]-tree but that do not act freely by isometries on any [Formula: see text]-tree. We also give an example of a group that admits a free isometric action on a [Formula: see text]-tree but which is not residually nilpotent.


Author(s):  
E. MACÍAS–VIRGÓS ◽  
D. MOSQUERA–LOIS

Abstract We show that well-known invariants like Lusternik–Schnirelmann category and topological complexity are particular cases of a more general notion, that we call homotopic distance between two maps. As a consequence, several properties of those invariants can be proved in a unified way and new results arise.


Sign in / Sign up

Export Citation Format

Share Document