scholarly journals Invariant means on topological semigroups

1966 ◽  
Vol 16 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Loren Argabright
1988 ◽  
Vol 37 (2) ◽  
pp. 247-262 ◽  
Author(s):  
Heneri A.M. Dzinotyiweyi

For a very large class of topological semigroups, we establish lower and upper bounds for the cardinality of the set of left invariant means on the space of left uniformly continuous functions. In certain cases we show that such a cardinality is exactly , where b is the smallest cardinality of the covering of the underlying topological semigroup by compact sets.


2003 ◽  
Vol 10 (2) ◽  
pp. 209-222
Author(s):  
I. Bakhia

Abstract Functions of dimension modulo a (rather wide) class of spaces are considered and the conditions are found, under which the dimension of the product of spaces modulo these classes is equal to zero. Based on these results, the sufficient conditions are established, under which spaces of free topological semigroups (in the sense of Marxen) and spaces of free topological groups (in the sense of Markov and Graev) are zero-dimensional modulo classes of compact spaces.


1981 ◽  
Vol 24 (1) ◽  
pp. 79-85 ◽  
Author(s):  
H. D. Junghenn

AbstractLet S and T be locally compact topological semigroups and a semidirect product. Conditions are determined under which topological left amenability of S and T implies that of , and conversely. The results are used to show that for a large class of semigroups which are neither compact nor groups, various notions of topological left amenability coincide.


1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 320-329
Author(s):  
K. R. Pearson

A topological semiring is a system (S, +, ⋅) where (S, +) and (S, ⋅) are topological semigroups and the distributive laws , hold for all x, y, z in S; + and ⋅ are called addition and multiplication respectively.


Sign in / Sign up

Export Citation Format

Share Document