On the Dimension Modulo Classes of Topological Spaces and Free Topological Groups

2003 ◽  
Vol 10 (2) ◽  
pp. 209-222
Author(s):  
I. Bakhia

Abstract Functions of dimension modulo a (rather wide) class of spaces are considered and the conditions are found, under which the dimension of the product of spaces modulo these classes is equal to zero. Based on these results, the sufficient conditions are established, under which spaces of free topological semigroups (in the sense of Marxen) and spaces of free topological groups (in the sense of Markov and Graev) are zero-dimensional modulo classes of compact spaces.

1980 ◽  
Vol 21 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Eric C. Nummela

During the 1920's and 30's, two distinct theories of “completions” for topological spaces were being developed: the French school of mathematics was describing the familiar notion of “complete relative to a uniformity”, and the Russian school the less well-known idea of “absolutely closed”. The two agree precisely for compact spaces.The first part of this article describes these two notions of completeness; the remainder is a presentation of the interesting, but apparently unrecorded, fact that the two ideas coincide when put in the context of topological groups.


Author(s):  
F.G. Mukhamadiev ◽  
◽  

A topological space X is locally weakly separable [3] at a point x∈X if x has a weakly separable neighbourhood. A topological space X is locally weakly separable if X is locally weakly separable at every point x∈X. The notion of local weak separability can be generalized for any cardinal τ ≥ℵ0 . A topological space X is locally weakly τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a weak τ-dense neighborhood in X [4]. The local weak density at a point x is denoted as lwd(x). The local weak density of a topological space X is defined in following way: lwd ( X ) = sup{ lwd ( x) : x∈ X } . A topological space X is locally τ-dense at a point x∈X if τ is the smallest cardinal number such that x has a τ-dense neighborhood in X [4]. The local density at a point x is denoted as ld(x). The local density of a topological space X is defined in following way: ld ( X ) = sup{ ld ( x) : x∈ X } . It is known that for any topological space we have ld(X ) ≤ d(X ) . In this paper, we study questions of the local weak τ-density of topological spaces and establish sufficient conditions for the preservation of the property of a local weak τ-density of subsets of topological spaces. It is proved that a subset of a locally τ-dense space is also locally weakly τ-dense if it satisfies at least one of the following conditions: (a) the subset is open in the space; (b) the subset is everywhere dense in space; (c) the subset is canonically closed in space. A proof is given that the sum, intersection, and product of locally weakly τ-dense spaces are also locally weakly τ-dense spaces. And also questions of local τ-density and local weak τ-density are considered in locally compact spaces. It is proved that these two concepts coincide in locally compact spaces.


2000 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
A.V. Arhangelskii

<p>A (binary) product operation on a topological space X is considered. The only restrictions are that some element e of X is a left and a right identity with respect to this multiplication, and that certain natural continuity requirements are satisfied. The operation is called diagonalization (of X). Two problems are considered: 1. When a topological space X admits such an operation, that is, when X is diagonalizable? 2. What are necessary conditions for diagonalizablity of a space (at a given point)? A progress is made in the article on both questions. In particular, it is shown that certain deep results about the topological structure of compact topological groups can be extended to diagonalizable compact spaces. The notion of a Moscow space is instrumental in our study.</p>


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Miroslav Hristov ◽  
Atanas Ilchev ◽  
Diana Nedelcheva ◽  
Boyan Zlatanov

We generalize the notion of coupled fixed (or best proximity) points for cyclic ordered pairs of maps to p-cyclic ordered pairs of maps. We find sufficient conditions for the existence and uniqueness of the coupled fixed (or best proximity) points. We illustrate the results with an example that covers a wide class of maps.


2020 ◽  
Author(s):  
M. Parimala ◽  
D. Arivuoli ◽  
R. Perumal ◽  
S. Krithika

2020 ◽  
Vol 32 (6) ◽  
pp. 1395-1406
Author(s):  
Joseph Chuang ◽  
Andrey Lazarev

AbstractWe show that the notions of homotopy epimorphism and homological epimorphism in the category of differential graded algebras are equivalent. As an application we obtain a characterization of acyclic maps of topological spaces in terms of induced maps of their chain algebras of based loop spaces. In the case of a universal acyclic map we obtain, for a wide class of spaces, an explicit algebraic description for these induced maps in terms of derived localization.


1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.


1994 ◽  
Vol 49 (1) ◽  
pp. 91-100
Author(s):  
Toshihiro Nagamizu

We extend the results of N.K. Ribarska and A.V. Arhangel'skiĭ to the class of strongly countably complete spaces. And we show another characterisation of Eberlein and Radon-Nikodým compact spaces.


2017 ◽  
Vol 20 (K2) ◽  
pp. 131-140
Author(s):  
Linh Manh Ha

Knaster-Kuratowski-Mazurkiewicz type theorems play an important role in nonlinear analysis, optimization, and applied mathematics. Since the first well-known result, many international efforts have been made to develop sufficient conditions for the existence of points intersection (and their applications) in increasingly general settings: Gconvex spaces [21, 23], L-convex spaces [12], and FCspaces [8, 9]. Applications of Knaster-Kuratowski-Mazurkiewicz type theorems, especially in existence studies for variational inequalities, equilibrium problems and more general settings have been obtained by many authors, see e.g. recent papers [1, 2, 3, 8, 18, 24, 26] and the references therein. In this paper we propose a definition of generalized KnasterKuratowski-Mazurkiewicz mappings to encompass R-KKM mappings [5], L-KKM mappings [11], T-KKM mappings [18, 19], and many recent existing mappings. Knaster-KuratowskiMazurkiewicz type theorems are established in general topological spaces to generalize known results. As applications, we develop in detail general types of minimax theorems. Our results are shown to improve or include as special cases several recent ones in the literature.


Sign in / Sign up

Export Citation Format

Share Document