scholarly journals Maximal subgroups and chief factors of certain generalized soluble groups

1971 ◽  
Vol 37 (2) ◽  
pp. 475-480 ◽  
Author(s):  
Richard Phillips ◽  
Derek Robinson ◽  
James Roseblade
1994 ◽  
Vol 166 (1) ◽  
pp. 67-70 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

1995 ◽  
Vol 38 (3) ◽  
pp. 511-522 ◽  
Author(s):  
M. J. Tomkinson

We introduce a definition of a Schunck class of periodic abelian-by-finite soluble groups using major subgroups in place of the maximal subgroups used in Finite groups. This allows us to develop the theory as in the finite case proving the existence and conjugacy of projectors. Saturated formations are examples of Schunck classes and we are also able to obtain an infinite version of Gaschütz Ω-subgroups.


2001 ◽  
Vol 71 (2) ◽  
pp. 159-168 ◽  
Author(s):  
R. A. Bryce ◽  
L. Serena

AbstractA cover for a group is a finite set of subgroups whose union is the whole group. A cover is minimal if its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at most one of their members are maximal subgroups. A characterisation is given of groups with minimal covers consisting of abelian subgroups.


1972 ◽  
Vol 7 (1) ◽  
pp. 101-104 ◽  
Author(s):  
D.W. Barnes

Let G = H0 > H1 > … > Hr = 1 and G = K0 > K1 > … > Kr =1 be two chief series of the finite soluble group G. Suppose Mi complements Hi/Hi+1. Then Mi also complements precisely one factor Kj/Kj+1, of the second series, and this Kj/Kj+1 is G-isomorphic to Hi/Hi+1. It is shown that complements Mi can be chosen for the complemented factors Hi/Hi+1 of the first series in such a way that distinct Mi complement distinct factors of the second series, thus establishing a one-to-one correspondence between the complemented factors of the two series. It is also shown that there is a one-to-one correspondence between the factors of the two series (but not in general constructible in the above manner), such that corresponding factors are G-isomorphic and have the same number of complements.


2021 ◽  
pp. 1-5
Author(s):  
Ning Su ◽  
Chenchen Cao ◽  
ShouHong Qiao

2018 ◽  
Vol 21 (1) ◽  
pp. 45-63
Author(s):  
Barbara Baumeister ◽  
Gil Kaplan

AbstractLetGbe a finite group with an abelian normal subgroupN. When doesNhave a unique conjugacy class of complements inG? We consider this question with a focus on properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup [3, Theorem 1]. Furthermore, we consider families of maximal subgroups ofGclosed under conjugation whose intersection equals{\Phi(G)}. In particular, we characterize the soluble groups having a unique minimal family with this property (Theorem 2.3, Remark 2.4). In the case when{\Phi(G)=1}, these are exactly the soluble groups in which each abelian normal subgroup has a unique conjugacy class of complements.


1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


Author(s):  
John Cossey

AbstractAn example is given to show that a class of finite soluble groups that is both a Fitting class and a Schunck class need not be a formation. The novel feature of this class is that it is defined by imposing conditions on complemented chief factors of groups in it: this technique usually does not give rise to Fitting classes that are not formations.


Sign in / Sign up

Export Citation Format

Share Document