scholarly journals Classification of smooth factorial affine surfaces of Kodaira dimension zero with trivial units

2021 ◽  
Vol 311 (2) ◽  
pp. 385-422
Author(s):  
Tomasz Pełka ◽  
Paweł Raźny
Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


Author(s):  
Paula Tretkoff

This chapter discusses complex algebraic surfaces, with particular emphasis on the Miyaoka-Yau inequality and the rough classification of surfaces. Every complex algebraic surface is birationally equivalent to a smooth surface containing no exceptional curves. The latter is known as a minimal surface. Two related birational invariants, the plurigenus and the Kodaira dimension, play an important role in distinguishing between complex surfaces. The chapter first provides an overview of the rough classification of (smooth complex connected compact algebraic) surfaces before presenting two approaches that, in dimension 2, give the Miyaoka-Yau inequality. The first, due to Miyaoka, uses algebraic geometry, whereas the second, due to Aubin and Yau, uses analysis and differential geometry. The chapter also explains why equality in the Miyaoka-Yau inequality characterizes surfaces of general type that are free quotients of the complex 2-ball.


2018 ◽  
Vol 235 ◽  
pp. 201-226
Author(s):  
FABRIZIO CATANESE ◽  
BINRU LI

The main goal of this paper is to show that Castelnuovo–Enriques’ $P_{12}$ - theorem (a precise version of the rough classification of algebraic surfaces) also holds for algebraic surfaces $S$ defined over an algebraically closed field $k$ of positive characteristic ( $\text{char}(k)=p>0$ ). The result relies on a main theorem describing the growth of the plurigenera for properly elliptic or properly quasielliptic surfaces (surfaces with Kodaira dimension equal to 1). We also discuss the limit cases, i.e., the families of surfaces which show that the result of the main theorem is sharp.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniele Agostini ◽  
Ignacio Barros

Abstract We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$ , $\overline {\mathcal {M}}_{12,7}$ , $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$ . We also show that the moduli space of $(4g+5)$ -pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.


Sign in / Sign up

Export Citation Format

Share Document