scholarly journals Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of

2021 ◽  
Vol 9 ◽  
Author(s):  
Daniele Agostini ◽  
Ignacio Barros

Abstract We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $\overline {\mathcal {M}}_{g,n}$ is not pseudoeffective in some range, implying that $\overline {\mathcal {M}}_{12,6}$ , $\overline {\mathcal {M}}_{12,7}$ , $\overline {\mathcal {M}}_{13,4}$ and $\overline {\mathcal {M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $\overline {\mathcal {M}}_{12,8}$ and $\overline {\mathcal {M}}_{16}$ . We also show that the moduli space of $(4g+5)$ -pointed hyperelliptic curves $\overline {\mathcal {H}}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the classification of moduli of pointed hyperelliptic curves with negative Kodaira dimension.

Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2017 ◽  
Vol 232 ◽  
pp. 121-150
Author(s):  
HIROMICHI TAKAGI ◽  
FRANCESCO ZUCCONI

Using the geometry of an almost del Pezzo threefold, we show that the moduli space ${\mathcal{S}}_{g,1}^{0,\text{hyp}}$ of genus $g$ one-pointed ineffective spin hyperelliptic curves is rational for every $g\geqslant 2$.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9011-9074 ◽  
Author(s):  
Omegar Calvo-Andrade ◽  
Maurício Corrêa ◽  
Marcos Jardim

Abstract We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation and certain logarithmic foliations have stable tangent sheaves.


2019 ◽  
Vol 2019 (752) ◽  
pp. 265-300 ◽  
Author(s):  
Sho Tanimoto ◽  
Anthony Várilly-Alvarado

Abstract A special cubic fourfold is a smooth hypersurface of degree 3 and dimension 4 that contains a surface not homologous to a complete intersection. Special cubic fourfolds give rise to a countable family of Noether–Lefschetz divisors {{\mathcal{C}}_{d}} in the moduli space {{\mathcal{C}}} of smooth cubic fourfolds. These divisors are irreducible 19-dimensional varieties birational to certain orthogonal modular varieties. We use the “low-weight cusp form trick” of Gritsenko, Hulek, and Sankaran to obtain information about the Kodaira dimension of {{\mathcal{C}}_{d}} . For example, if {d=6n+2} , then we show that {{\mathcal{C}}_{d}} is of general type for {n>18} , {n\notin\{20,21,25\}} ; it has nonnegative Kodaira dimension if {n>13} and {n\neq 15} . In combination with prior work of Hassett, Lai, and Nuer, our investigation leaves only twenty values of d for which no information on the Kodaira dimension of {{\mathcal{C}}_{d}} is known. We discuss some questions pertaining to the arithmetic of K3 surfaces raised by our results.


1983 ◽  
Vol 91 ◽  
pp. 163-172 ◽  
Author(s):  
Mauro Beltrametti ◽  
Paolo Francia

The purpose of this paper is to study threefolds X, with negative Kodaira dimension k(X) and positive irregularity q(X), defined over the complex field C.


2009 ◽  
Vol 145 (5) ◽  
pp. 1227-1248 ◽  
Author(s):  
Angela Gibney

AbstractThe moduli space $\M _{g,n}$ of n-pointed stable curves of genus g is stratified by the topological type of the curves being parameterized: the closure of the locus of curves with k nodes has codimension k. The one-dimensional components of this stratification are smooth rational curves called F-curves. These are believed to determine all ample divisors. F-conjecture A divisor on $\M _{g,n}$ is ample if and only if it positively intersects theF-curves. In this paper, proving the F-conjecture on $\M _{g,n}$ is reduced to showing that certain divisors on $\M _{0,N}$ for N⩽g+n are equivalent to the sum of the canonical divisor plus an effective divisor supported on the boundary. Numerical criteria and an algorithm are given to check whether a divisor is ample. By using a computer program called the Nef Wizard, written by Daniel Krashen, one can verify the conjecture for low genus. This is done on $\M _g$ for g⩽24, more than doubling the number of cases for which the conjecture is known to hold and showing that it is true for the first genera such that $\M _g$ is known to be of general type.


Sign in / Sign up

Export Citation Format

Share Document