Residual Echo and Noise Cancellation with Feature Attention Module and Multi-Domain Loss Function

Author(s):  
Jianjun Gu ◽  
Longbiao Cheng ◽  
Xingwei Sun ◽  
Junfeng Li ◽  
Yonghong Yan
Author(s):  
Ojasvi Yadav ◽  
Koustav Ghosal ◽  
Sebastian Lutz ◽  
Aljosa Smolic

AbstractWe address the problem of exposure correction of dark, blurry and noisy images captured in low-light conditions in the wild. Classical image-denoising filters work well in the frequency space but are constrained by several factors such as the correct choice of thresholds and frequency estimates. On the other hand, traditional deep networks are trained end to end in the RGB space by formulating this task as an image translation problem. However, that is done without any explicit constraints on the inherent noise of the dark images and thus produces noisy and blurry outputs. To this end, we propose a DCT/FFT-based multi-scale loss function, which when combined with traditional losses, trains a network to translate the important features for visually pleasing output. Our loss function is end to end differentiable, scale-agnostic and generic; i.e., it can be applied to both RAW and JPEG images in most existing frameworks without additional overhead. Using this loss function, we report significant improvements over the state of the art using quantitative metrics and subjective tests.


Author(s):  
A. Howie ◽  
D.W. McComb

The bulk loss function Im(-l/ε (ω)), a well established tool for the interpretation of valence loss spectra, is being progressively adapted to the wide variety of inhomogeneous samples of interest to the electron microscopist. Proportionality between n, the local valence electron density, and ε-1 (Sellmeyer's equation) has sometimes been assumed but may not be valid even in homogeneous samples. Figs. 1 and 2 show the experimentally measured bulk loss functions for three pure silicates of different specific gravity ρ - quartz (ρ = 2.66), coesite (ρ = 2.93) and a zeolite (ρ = 1.79). Clearly, despite the substantial differences in density, the shift of the prominent loss peak is very small and far less than that predicted by scaling e for quartz with Sellmeyer's equation or even the somewhat smaller shift given by the Clausius-Mossotti (CM) relation which assumes proportionality between n (or ρ in this case) and (ε - 1)/(ε + 2). Both theories overestimate the rise in the peak height for coesite and underestimate the increase at high energies.


2009 ◽  
Author(s):  
Katherine S. Moore ◽  
Melanie Sottile ◽  
Elise F. Darling ◽  
Daniel H. Weissman
Keyword(s):  

1990 ◽  
Vol 51 (C2) ◽  
pp. C2-765-C2-768
Author(s):  
C. DUVERMY ◽  
E. ORTOLA
Keyword(s):  

Author(s):  
Кonstantin А. Elshin ◽  
Еlena I. Molchanova ◽  
Мarina V. Usoltseva ◽  
Yelena V. Likhoshway

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.


Sign in / Sign up

Export Citation Format

Share Document