loss peak
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 438
Author(s):  
Shuo Liu ◽  
Lin Li ◽  
Zhenxu Bai

In this paper, a highly sensitive biosensor based on partially immobilized silver nanopillars is proposed. The working frequency of this sensor is in the terahertz band, and the range of the detected refractive index is 1.33 to 1.38. We set air holes of two different sizes on the cross-section of the optical fiber and arranged them into a hexagon. In order to improve the sensitivity, silver nanopillars were immobilized on part of the surface of the fiber cladding. The method for detecting the change of refractive index of the bio-analyte was based on local surface plasmon resonance properties of noble metal. The research recorded valuable data about the values of loss peak and full width at half maximum as well as resonance frequency shift under different setting conditions. The data present the biosensor‘s final sensitivity as 1.749 THz/RIU.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 678-688
Author(s):  
Artem Shiryaev ◽  
Konstantin Rozanov ◽  
Andrey Naboko ◽  
Anastasia Artemova ◽  
Sergey Maklakov ◽  
...  

Composite materials filled with ferromagnetic inclusions are useful in the development of various microwave devices. The performance of such devices is determined both by material properties (such as the saturation magnetization and the permeability) and by the demagnetization effects. The paper is devoted to the study of the demagnetization effect on the permeability measurements of composites under external magnetic bias. The microwave permeability of composites filled with flake sendust (Fe-Si-Al alloy) particles is measured as a function of frequency and the external magnetic field. The measurements are carried out by the Nicolson–Ross–Weir technique in a 7/3 coaxial line in the frequency range of 0.1 to 20 GHz by a vector network analyzer. It is found that the magnetic loss peak is split under external fields of more than 1.5 kOe. The main aim of this paper is to study the causes of this splitting and to interpret the observed magnetic loss peaks. To study this effect, the samples of various thicknesses and the samples with isotropic and anisotropic orientations of particles are measured. The particles in the anisotropic samples are oriented by a strong uniform magnetic field. At a small fraction of inclusions, the permanent magnetic field is demagnetized on the individual particles rather than the whole sample. The splitting of the magnetic loss peak of the isotropic sample is caused by different orientations of particles in the sample. At a high fraction of inclusions, the permanent magnetic field is demagnetized on the whole sample and the magnetic loss peak of the isotropic sample is not split. The saturation magnetization of the material is found by measurements under the external magnetic field of the anisotropic sample.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Rams-Baron ◽  
A. Jędrzejowska ◽  
K. Jurkiewicz ◽  
M. Matussek ◽  
M. Musiał ◽  
...  

AbstractWe examined a series of structurally related glass-forming liquids in which a phenothiazine-based tricyclic core (PTZ) was modified by attaching n-alkyl chains of different lengths (n = 4, 8, 10). We systematically disentangled the impact of chemical structure modification on the intermolecular organization and molecular dynamics probed by broadband dielectric spectroscopy (BDS). X-ray diffraction (XRD) patterns evidenced that all PTZ-derivatives are not ‘ordinary’ liquids and form nanoscale clusters. The chain length has a decisive impact on properties, exerting a plasticizing effect on the dynamics. Its elongation decreases glass transition temperature with slight impact on fragility. The increase in the medium-range order was manifested as a broadening of the dielectric loss peak reflected in the lower value of stretching parameter βKWW. A disagreement with the behavior observed for non-associating liquids was found as a deviation from the anti-correlation between the value of βKWW and the relaxation strength of the α-process. Besides, to explain the broadening of loss peak in PTZ with the longest (decyl) chain a slow Debye process was postulated. In contrast, the sample with the shortest alkyl chain and a less complex structure with predominant supramolecular assembly through π–π stacking exhibits no clear Debye-mode fingerprints. The possible reasons are also discussed.


Author(s):  
Yasir I.A. Al-Yasir ◽  
Hasanain A.H. Al-Behadili ◽  
Baha A. Sawadi ◽  
Naser Ojaroudi Parchin ◽  
Ahmed M. Abdulkhaleq ◽  
...  

Reconfigurable beam steering using circular disc microstrip patch antenna with a ring slot is proposed. The overall dimension of the antenna is 5.4 × 5.4 mm2 printed on 0.504 mm thick, RT5870 substrate with relative permittivity 2.3 and loss tangent 0.0012. The designed antenna operates at the expected 60 GHz 5G frequency band with a central coaxial probe feed. Two NMOS switches are utilized to generate three different beam patterns. Activating each switch individually results in a 70° shift in the main beam direction with constant frequency characteristics. The power gain is 3.9–4.8 dB in the three states of switch configurations. Simulated results in terms of return loss, peak gains and radiation pattern are presented and show good performance at the expected 60 GHz band for 5G applications.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1219 ◽  
Author(s):  
Daning Zhang ◽  
Guanwei Long ◽  
Yang Li ◽  
Haibao Mu ◽  
Guanjun Zhang

In order to realize the diagnosis of water distribution, this paper analyzes the interface polarization and macroscopic space charge polarization mechanism when the water distribution is non-uniform. The experimental results of this paper and bushing show that when the moisture distribution is non-uniform, there is a significant loss peak in the tanδ-f curve. The loss peak shifts to higher frequencies as the non-uniformity coefficient increases. There are common intersection points between multiple tanδ-f curves. Further, this paper realizes the diagnosis of the location of moisture distribution through Frequency Domain Spectroscopy (FDS) testing of different voltages and different wiring methods based on the macroscopic space charge polarization. In the single-cycle FDS test, when the positive electrode is first added to the area with higher moisture content, the amplitude of the tanδ-f curve is smaller. The tanδ-f curves under different wiring methods constitute a “ring-shaped” loss peak. As the voltage increases, the peak value of the loss peak shifts to the lower frequency band. As the temperature increases, the peak value of the loss peak shifts to higher frequencies. Based on the above rules and mechanism analysis, this research provides a new solution for the evaluation of moisture content of oil-immersed polymers equipment.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Di Guan ◽  
Dan Zhao ◽  
Zhaoxin Ren

To broaden its’ effective frequency range and to improve its transmission loss performance, a modified design of a Helmholtz resonator is proposed and evaluated by implementing a rigid baffle in its cavity. Comparison is then made between the proposed design and the conventional one by considering a rectangular duct with the resonator implemented in the presence of a mean grazing flow. For this, a linearized 2D Navier-Stokes model in frequency domain is developed. After validated by benchmarking with the available experimental data and our experimental measurements, the model is used to evaluate the effects of (1) the width Lp of the rigid baffle, (2) its implementation location/height Hg, (3) its implementation configurations (i.e., attached to the left sidewall or right sidewall), (4) the grazing mean flow Mu (Mach number), and (5) the neck shape on a noise damping effect. It is shown that as the rigid baffle is attached in the 2 different configurations, the resonant frequencies and the maximum transmission losses cannot be predicted by using the classical theoretical formulation ω2=c2S/VLeff, especially as the grazing Mach number Mu is greater than 0.07, i.e., Mu>0.07. In addition, there is an optimum grazing flow Mach number corresponding to the maximum transmission loss peak, as the width Lp is less than half of the cavity width Dr, i.e., Lp/Dr≤0.5. As the rigid plate width is increased to Lp/Dr=0.75, one additional transmission loss peak at approximately 400 Hz is produced. The generation of the 12 dB transmission loss peak at 400 Hz is shown to attribute to the sound and structure interaction. Finally, varying the neck shape from the conventional one to an arc one leads to the dominant resonant frequency being increased by approximately 20% and so the secondary transmission loss peak by 2-5 dB. The present work proposes and systematically studies an improved design of a Helmholtz resonator with an additional transmission loss peak at a high frequency, besides the dominant peak at a low frequency.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3356-3367
Author(s):  
Falin Chen ◽  
Jinfang Yao ◽  
Yuyu Lin ◽  
Mingyan Gu ◽  
Shang Li

The pyrolysis processes of lignin under the action of CaO and K2HPO4·3H2O alone or in coordination were studied by thermogravimetric mass spectrometry (TG-MS). The experimental results showed that after addition of CaO, CaO immobilized the “CO2-like active intermediates” produced during lignin pyrolysis, which reduced the amount of CO2 emission in the first stage and lowered the temperature of CO2 emission in the second stage. After addition of K2HPO4·3H2O, lignin pyrolysis was remarkably advanced. K2HPO4·3H2O catalyzed methyl breakages in the first two pyrolysis stages, and it hindered the release of volatile matter in the third stage to promote the formation of more coke. K2HPO4·3H2O catalyzed the reactions toward formation of aromatic ring products and phenols. After addition of CaO and K2HPO4·3H2O, the initial pyrolysis stage was milder than that with K2HPO4·3H2O alone, and the weight loss peak was sharper in the second stage. In the pyrolysis stage, the trend of CH4, CO, M/Z = 46, toluene, and furfural emission showed that there was a synergistic effect between K2HPO4·3H2O and CaO.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 465
Author(s):  
Yuqi Han ◽  
Yan Jiang ◽  
Wei Guo

Cholesteric liquid crystals (CLCs) are sensitive to environmental temperature changes, and have been employed as a specific intermediary for biosensors. Considering the temperature-dependent structural changes of CLCs, this study aimed to determine the sensing properties of side-polished fibers (SPFs) after coating with CLCs. The experimental results demonstrated that, with regard to the transmitted spectrum, the loss peak of CLC-coated SPFs exhibited a positive linear relationship with temperature changes over a range of 20 to 50 °C. The linear correlation coefficient achieved 97.8% when the temperature increased by 10 °C, and the loss peak drifted by 12.72 nm. The reflectance spectrum of CLCs coated on the polished surface were obtained using optical fiber sensors. The feasibility of measuring the helical structure of CLCs was further verified using SPF transmission spectroscopy. The findings indicated that the transmitted spectrum of SPFs could be adopted to characterize the helical structure of CLCs, which lays a solid foundation for further study on SPF-based biosensors.


2019 ◽  
Vol 9 (3) ◽  
pp. 4092-4099
Author(s):  
S. Boumous ◽  
S. Belkhiat ◽  
F. Kharchouche

The dielectric properties of barium titanate as functions of the MgO addition in various rates are investigated in this paper. The ceramics were prepared by conventional methods. X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry, were applied to determine the structure and microstructure of the studied material. Phases MgO, TiO and TiO2, have been detected. Decrease of the grain size with increasing MgO content was observed. Measurements of εr, tgδ and resistance have been performed at temperatures ranging from 300C to 4000C. The electric permittivity (εr) showed a considerable decrease with increasing MgO concentration. Additionally, for low MgO concentration (10£mol.% MgO) a shift of the dielectric loss peak (tgδm) towards low temperatures was observed. When the MgO content was ≥15mol.% MgO the tgδm moved into higher temperatures. The obtained results indicate that the substitution of Mg2+ ions in B-site ions (Ti4+) had a significant influence on the values of εr, tgδ and the resistance increase of the ceramics.


Sign in / Sign up

Export Citation Format

Share Document