classical image
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 54)

H-INDEX

8
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2943
Author(s):  
Stanisław Hożyń

Underwater mines pose extreme danger for ships and submarines. Therefore, navies around the world use mine countermeasure (MCM) units to protect against them. One of the measures used by MCM units is mine hunting, which requires searching for all the mines in a suspicious area. It is generally divided into four stages: detection, classification, identification and disposal. The detection and classification steps are usually performed using a sonar mounted on a ship’s hull or on an underwater vehicle. After retrieving the sonar data, military personnel scan the seabed images to detect targets and classify them as mine-like objects (MLOs) or benign objects. To reduce the technical operator’s workload and decrease post-mission analysis time, computer-aided detection (CAD), computer-aided classification (CAC) and automated target recognition (ATR) algorithms have been introduced. This paper reviews mine detection and classification techniques used in the aforementioned systems. The author considered current and previous generation methods starting with classical image processing, and then machine learning followed by deep learning. This review can facilitate future research to introduce improved mine detection and classification algorithms.


2021 ◽  
Vol 13 (21) ◽  
pp. 4486
Author(s):  
Ildar Rakhmatuiln ◽  
Andreas Kamilaris ◽  
Christian Andreasen

Automation, including machine learning technologies, are becoming increasingly crucial in agriculture to increase productivity. Machine vision is one of the most popular parts of machine learning and has been widely used where advanced automation and control have been required. The trend has shifted from classical image processing and machine learning techniques to modern artificial intelligence (AI) and deep learning (DL) methods. Based on large training datasets and pre-trained models, DL-based methods have proven to be more accurate than previous traditional techniques. Machine vision has wide applications in agriculture, including the detection of weeds and pests in crops. Variation in lighting conditions, failures to transfer learning, and object occlusion constitute key challenges in this domain. Recently, DL has gained much attention due to its advantages in object detection, classification, and feature extraction. DL algorithms can automatically extract information from large amounts of data used to model complex problems and is, therefore, suitable for detecting and classifying weeds and crops. We present a systematic review of AI-based systems to detect weeds, emphasizing recent trends in DL. Various DL methods are discussed to clarify their overall potential, usefulness, and performance. This study indicates that several limitations obstruct the widespread adoption of AI/DL in commercial applications. Recommendations for overcoming these challenges are summarized.


2021 ◽  
Vol 13 (21) ◽  
pp. 4255
Author(s):  
Alina Ciocarlan ◽  
Andrei Stoian

Automatic ship detection provides an essential function towards maritime domain awareness for security or economic monitoring purposes. This work presents an approach for training a deep learning ship detector in Sentinel-2 multi-spectral images with few labeled examples. We design a network architecture for detecting ships with a backbone that can be pre-trained separately. By using self supervised learning, an emerging unsupervised training procedure, we learn good features on Sentinel-2 images, without requiring labeling, to initialize our network’s backbone. The full network is then fine-tuned to learn to detect ships in challenging settings. We evaluated this approach versus pre-training on ImageNet and versus a classical image processing pipeline. We examined the impact of variations in the self-supervised learning step and we show that in the few-shot learning setting self-supervised pre-training achieves better results than ImageNet pre-training. When enough training data are available, our self-supervised approach is as good as ImageNet pre-training. We conclude that a better design of the self-supervised task and bigger non-annotated dataset sizes can lead to surpassing ImageNet pre-training performance without any annotation costs.


2021 ◽  
Vol 7 (2) ◽  
pp. 755-758
Author(s):  
Daniel Wulff ◽  
Mohamad Mehdi ◽  
Floris Ernst ◽  
Jannis Hagenah

Abstract Data augmentation is a common method to make deep learning assessible on limited data sets. However, classical image augmentation methods result in highly unrealistic images on ultrasound data. Another approach is to utilize learning-based augmentation methods, e.g. based on variational autoencoders or generative adversarial networks. However, a large amount of data is necessary to train these models, which is typically not available in scenarios where data augmentation is needed. One solution for this problem could be a transfer of augmentation models between different medical imaging data sets. In this work, we present a qualitative study of the cross data set generalization performance of different learning-based augmentation methods for ultrasound image data. We could show that knowledge transfer is possible in ultrasound image augmentation and that the augmentation partially results in semantically meaningful transfers of structures, e.g. vessels, across domains.


2021 ◽  
Author(s):  
Lujia Lei ◽  
Chengmao Wu ◽  
Xiaoping Tian

Abstract Clustering algorithms with deep neural network have attracted wide attention of scholars. A deep fuzzy K-means clustering algorithm model with adaptive loss function and entropy regularization (DFKM) is proposed by combining automatic encoder and clustering algorithm. Although it introduces adaptive loss function and entropy regularization to improve the robustness of the model, its segmentation effect is not ideal for high noise; At the same time, its model does not use a convolutional auto-encoder, which is not suitable for high-dimensional images.Therefore, on the basis of DFKM, this paper focus on image segmentation, combine neighborhood median and mean information of current pixel, introduce neighborhood information of membership degree, and extend Euclidean distance to kernel space by using kernel function, propose a dual-neighborhood information constrained deep fuzzy clustering based on kernel function (KDFKMS). A large number of experimental results show that compared with DFKM and classical image segmentation algorithms, this algorithm has stronger anti-noise robustness.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Lydia Kienbaum ◽  
Miguel Correa Abondano ◽  
Raul Blas ◽  
Karl Schmid

Abstract Background Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy ($$r=0.99$$ r = 0.99 ). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.


Author(s):  
Alireza Rastegarpanah ◽  
Ali Aflakian ◽  
Rustam Stolkin

This study proposes an optimized hybrid visual servoing approach to overcome the imperfections of classical two-dimensional, three-dimensional and hybrid visual servoing methods. These imperfections are mostly convergence issues, non-optimized trajectories, expensive calculations and singularities. The proposed method provides more efficient optimized trajectories with shorter camera path for the robot than image-based and classical hybrid visual servoing methods. Moreover, it is less likely to lose the object from the camera field of view, and it is more robust to camera calibration than the classical position-based and hybrid visual servoing methods. The drawbacks in two-dimensional visual servoing are mostly related to the camera retreat and rotational motions. To tackle these drawbacks, rotations and translations in Z-axis have been separately controlled from three-dimensional estimation of the visual features. The pseudo-inverse of the proposed interaction matrix is approximated by a neuro-fuzzy neural network called local linear model tree. Using local linear model tree, the controller avoids the singularities and ill-conditioning of the proposed interaction matrix and makes it robust to image noises and camera parameters. The proposed method has been compared with classical image-based, position-based and hybrid visual servoing methods, both in simulation and in the real world using a 7-degree-of-freedom arm robot.


Author(s):  
Y. M. Valencia ◽  
J. J. Majin ◽  
V. B. Taveira ◽  
J. D. Salazar ◽  
M. E. Stivanello ◽  
...  

Abstract. The objective of this work is to compare the use of classical image processing approaches with deep learning approaches in a visual inspection system for defects in commercial eggs. Currently, many industries perform the detection of defects in eggs manually, this implies a large number of workers with long working hours who are exposed to visual fatigue and physical and mental discomfort. As a solution, this work proposes to develop an automatic inspection technique for defects in eggs using computer vision, capable of being operable in the industry. Different image processing approaches were evaluated in order to determine the best solution in terms of performance and processing time.


2021 ◽  
pp. 2150360
Author(s):  
Wanghao Ren ◽  
Zhiming Li ◽  
Yiming Huang ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
...  

Quantum machine learning is expected to be one of the potential applications that can be realized in the near future. Finding potential applications for it has become one of the hot topics in the quantum computing community. With the increase of digital image processing, researchers try to use quantum image processing instead of classical image processing to improve the ability of image processing. Inspired by previous studies on the adversarial quantum circuit learning, we introduce a quantum generative adversarial framework for loading and learning a quantum image. In this paper, we extend quantum generative adversarial networks to the quantum image processing field and show how to learning and loading an classical image using quantum circuits. By reducing quantum gates without gradient changes, we reduced the number of basic quantum building block from 15 to 13. Our framework effectively generates pure state subject to bit flip, bit phase flip, phase flip, and depolarizing channel noise. We numerically simulate the loading and learning of classical images on the MINST database and CIFAR-10 database. In the quantum image processing field, our framework can be used to learn a quantum image as a subroutine of other quantum circuits. Through numerical simulation, our method can still quickly converge under the influence of a variety of noises.


Sign in / Sign up

Export Citation Format

Share Document