scholarly journals A Review on the Seismic Performance Assessment of Steel Diagrid Structures

Author(s):  
Nourin N ◽  
Hazeena R ◽  
Asif Basheer

In recent years, there is rapid increase in the construction of high rise structures due to the increase in population, high cost of land and restriction in horizontal growth due to less space. The advancements in the development of technological solutions and construction methods of high rise structures led to the innovative structural systems. One of the important criteria that need to be considered in the design of high rise structures is minimization of lateral loads. Hence, the importance of lateral load resisting system increased than structural systems that resist gravitational loads. Lateral loading due to wind and earthquake are the major factors that have to be considered in the design of high-rise structures. Diagrid structural system is recognized as a unique system in construction of high rise structures which is a variation of tubular structures. It consists of inclined members instead of vertical columns in conventional structures to carry both gravity and lateral loads. It gains popularity due to its structural efficiency and aesthetic potential gained by its unique geometric configuration. The present work reviews studies regarding seismic performance assessment of steel diagrid structures, studies on seismic performance factors of steel diagrid structures, impact of shear-lag effect and comparative studies on diagrids. Diagrids are found to be an efficient structural system for high rise structures in terms of structural efficiency as well as aesthetics. Also, it provides more economy, in terms of consumption of steel, thus making it cost-effective and eco-friendly.

2016 ◽  
Vol 857 ◽  
pp. 47-52
Author(s):  
Elsa Alexander Anjana ◽  
R. Renjith ◽  
Binu M. Issac

Structural design of high rise buildings is governed by lateral loads due to wind or earthquake. As the height of building increases, the lateral load resisting system becomes more important than the structural system that resists the gravitational loads. Recently, diagrid structural system are widely used for tall buildings due to its structural efficiency and flexibility in architectural planning. Diagrid structural system is made around the perimeter of building in the form of a triangulated truss system by intersecting the diagonal and horizontal members. Diagonal members in diagrid structural systems can carry gravity loads as well as lateral loads. Lateral loads are resisted by axial action of the diagonals compared to bending of vertical columns in framed tube structure. The structural efficiency of diagrid system also helps in avoiding interior and corner columns, thereby allowing significant flexibility with the floor plan. In this paper, effect of lateral loads on steel diagrid buildings are studied. Square and rectangular buildings of same plan area with diagrid structural system is considered for the study. Diagrid modules extending upto 2,4,6,8 and 12 storeys are evaluated. Static analysis for the gravity loads, wind and earthquake and response spectrum analysis are carried out for these different combinations of plan shape and diagrid modules and performance of all these diagrid models i.e., storey displacement, storey drift and modal time period are evaluated and compared in this study.


Sign in / Sign up

Export Citation Format

Share Document