scholarly journals Genuine multipartite entanglement in time

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Simon Milz ◽  
Cornelia Spee ◽  
Zhen-Peng Xu ◽  
Felix Pollock ◽  
Kavan Modi ◽  
...  

While spatial quantum correlations have been studied in great detail, much less is known about the genuine quantum correlations that can be exhibited by temporal processes. Employing the quantum comb formalism, processes in time can be mapped onto quantum states, with the crucial difference that temporal correlations have to satisfy causal ordering, while their spatial counterpart is not constrained in the same way. Here, we exploit this equivalence and use the tools of multipartite entanglement theory to provide a comprehensive picture of the structure of correlations that (causally ordered) temporal quantum processes can display. First, focusing on the case of a process that is probed at two points in time -- which can equivalently be described by a tripartite quantum state -- we provide necessary as well as sufficient conditions for the presence of bipartite entanglement in different splittings. Next, we connect these scenarios to the previously studied concepts of quantum memory, entanglement breaking superchannels, and quantum steering, thus providing both a physical interpretation for entanglement in temporal quantum processes, and a determination of the resources required for its creation. Additionally, we construct explicit examples of W-type and GHZ-type genuinely multipartite entangled two-time processes and prove that genuine multipartite entanglement in temporal processes can be an emergent phenomenon. Finally, we show that genuinely entangled processes across multiple times exist for any number of probing times.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Barrett ◽  
Robin Lorenz ◽  
Ognyan Oreshkov

AbstractCausal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes – provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.


2017 ◽  
Vol 58 (8) ◽  
pp. 082201 ◽  
Author(s):  
Fabien Clivaz ◽  
Marcus Huber ◽  
Ludovico Lami ◽  
Gláucia Murta

2012 ◽  
Vol 10 (06) ◽  
pp. 1250073
Author(s):  
JIAN-FENG AI ◽  
JIAN-SONG ZHANG ◽  
AI-XI CHEN

We investigate the transfer of bipartite (measured by cocurrence) and multipartite (measured by global discord) quantum correlations though spin chains under phase decoherence. The influence of phase decoherence and anisotropy parameter upon quantum correlations transfer is investigated. On the one hand, in the case of no phase decoherence, there is no steady state quantum correlations between spins. On the other hand, if the phase decoherence is larger than zero, the bipartite quantum correlations can be transferred through a Heisenberg XXX chain for a long time and there is steady state bipartite entanglement. For a Heisenberg XX chain, bipartite entanglement between two spins is destroyed completely after a long time. Multipartite quantum correlations of all spins are more robust than bipartite quantum correlations. Thus, one can store multipartite quantum correlations in spin chains for a long time under phase decoherence.


2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Ya Xi ◽  
Tinggui Zhang ◽  
Zhu-Jun Zheng ◽  
Xianqing Li-Jost ◽  
Shao-Ming Fei

Sign in / Sign up

Export Citation Format

Share Document