bipartite entanglement
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Yuan Shen ◽  
Giampiero Marchegiani ◽  
Gianluigi Catelani ◽  
Luigi Amico ◽  
Ai Qun Liu ◽  
...  

We study a Rabi type Hamiltonian system in which a qubit and a dd-level quantum system (qudit) are coupled through a common resonator. In the weak and strong coupling limits the spectrum is analysed through suitable perturbative schemes. The analysis show that the presence of the multilevels of the qudit effectively enhance the qubit-qudit interaction. The ground state of the strongly coupled system is found to be of Greenberger-Horne-Zeilinger (GHZ) type. Therefore, despite the qubit-qudit strong coupling, the nature of the specific tripartite entanglement of the GHZ state suppresses the bipartite entanglement. We analyze the system dynamics under quenching and adiabatic switching of the qubit-resonator and qudit-resonator couplings. In the quench case, we found that the non-adiabatic generation of photons in the resonator is enhanced by the number of levels in the qudit. The adiabatic control represents a possible route for preparation of GHZ states. Our analysis provides relevant information for future studies on coherent state transfer in qubit-qudit systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3096
Author(s):  
Hana Vargová ◽  
Jozef Strečka

The concept of negativity is adapted in order to explore the quantum and thermal entanglement of the mixed spin-(1/2,S) Heisenberg dimers in presence of an external magnetic field. The mutual interplay between the spin size S, XXZ exchange and uniaxial single-ion anisotropy is thoroughly examined with a goal to tune the degree and thermal stability of the pairwise entanglement. It turns out that the antiferromagnetic spin-(1/2,S) Heisenberg dimers exhibit higher degree of entanglement and higher threshold temperature in comparison with their ferromagnetic counterparts when assuming the same set of model parameters. The increasing spin magnitude S accompanied with an easy-plane uniaxial single-ion anisotropy can enhance not only the thermal stability but simultaneously the degree of entanglement. It is additionally shown that the further enhancement of a bipartite entanglement can be achieved in the mixed spin-(1/2,S) Heisenberg dimers, involving half-odd-integer spins S. Under this condition the thermal negativity saturates at low-enough temperatures in its maximal value regardless of the magnitude of half-odd-integer spin S. The magnetic field induces consecutive discontinuous phase transitions in the mixed spin-(1/2,S) Heisenberg dimers with S>1, which are manifested in a surprising oscillating magnetic-field dependence of the negativity observed at low enough temperature.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Shachar Fraenkel ◽  
Moshe Goldstein

Entanglement plays a prominent role in the study of condensed matter many-body systems: Entanglement measures not only quantify the possible use of these systems in quantum information protocols, but also shed light on their physics. However, exact analytical results remain scarce, especially for systems out of equilibrium. In this work we examine a paradigmatic one-dimensional fermionic system that consists of a uniform tight-binding chain with an arbitrary scattering region near its center, which is subject to a DC bias voltage at zero temperature. The system is thus held in a current-carrying nonequilibrium steady state, which can nevertheless be described by a pure quantum state. Using a generalization of the Fisher-Hartwig conjecture, we present an exact calculation of the bipartite entanglement entropy of a subsystem with its complement, and show that the scaling of entanglement with the length of the subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term. The linear term is related to imperfect transmission due to scattering, and provides a generalization of the Levitov-Lesovik full counting statistics formula. The logarithmic term arises from the Fermi discontinuities in the distribution function. Our analysis also produces an exact expression for the particle-number-resolved entanglement. We find that although to leading order entanglement equipartition applies, the first term breaking it grows with the size of the subsystem, a novel behavior not observed in previously studied systems. We apply our general results to a concrete model of a tight-binding chain with a single impurity site, and show that the analytical expressions are in good agreement with numerical calculations. The analytical results are further generalized to accommodate the case of multiple scattering regions.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 359
Author(s):  
Alexandre M. Gavrilik ◽  
Andriy V. Nazarenko

In this paper, we further elaborate on the Bose–Einstein condensate (BEC) dark matter model extended in our previous work [Phys. Rev. D 2020, 102, 083510] by the inclusion of sixth-order (or three-particle) repulsive self-interaction term. Herein, our goal is to complete the picture through adding to the model the fourth-order repulsive self-interaction. The results of our analysis confirm the following: while in the previous work the two-phase structure and the possibility of first-order phase transition was established, here we demonstrate that with the two self-interactions involved, the nontrivial phase structure of the enriched model remains intact. For this to hold, we study the conditions which the parameters of the model, including the interaction parameters, should satisfy. As a by-product and in order to provide some illustration, we obtain the rotation curves and the (bipartite) entanglement entropy for the case of a particular dwarf galaxy.


2021 ◽  
Vol 42 (5) ◽  
pp. 501-511
Author(s):  
Haleema Sadia Qureshi ◽  
Shakir Ullah ◽  
Fazal Ghafoor

Author(s):  
Nizar Ahami ◽  
Morad El Baz

We consider a one-dimensional, mixed spin Heisenberg XXX model with an homogeneous external magnetic field and Dzyaloshinskii–Moriya interaction. Alternating spin-[Formula: see text] and spin-1 particles are forming the chain. The effect of the different parameters of the system on the bipartite thermal entanglement is studied. The type of chain used (mixed) and the size of the chain ([Formula: see text]) allow to study three types of bipartite entanglement, the qubit–qubit, qubit–qutrit and qutrit–qutrit thermal entanglement.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Simon Milz ◽  
Cornelia Spee ◽  
Zhen-Peng Xu ◽  
Felix Pollock ◽  
Kavan Modi ◽  
...  

While spatial quantum correlations have been studied in great detail, much less is known about the genuine quantum correlations that can be exhibited by temporal processes. Employing the quantum comb formalism, processes in time can be mapped onto quantum states, with the crucial difference that temporal correlations have to satisfy causal ordering, while their spatial counterpart is not constrained in the same way. Here, we exploit this equivalence and use the tools of multipartite entanglement theory to provide a comprehensive picture of the structure of correlations that (causally ordered) temporal quantum processes can display. First, focusing on the case of a process that is probed at two points in time -- which can equivalently be described by a tripartite quantum state -- we provide necessary as well as sufficient conditions for the presence of bipartite entanglement in different splittings. Next, we connect these scenarios to the previously studied concepts of quantum memory, entanglement breaking superchannels, and quantum steering, thus providing both a physical interpretation for entanglement in temporal quantum processes, and a determination of the resources required for its creation. Additionally, we construct explicit examples of W-type and GHZ-type genuinely multipartite entangled two-time processes and prove that genuine multipartite entanglement in temporal processes can be an emergent phenomenon. Finally, we show that genuinely entangled processes across multiple times exist for any number of probing times.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3420
Author(s):  
Azadeh Ghannadan ◽  
Jozef Strečka

The bipartite entanglement in pure and mixed states of a quantum spin-1 Heisenberg dimer with exchange and uniaxial single-ion anisotropies is quantified through the negativity in a presence of the external magnetic field. At zero temperature the negativity shows a marked stepwise dependence on a magnetic field with two abrupt jumps and plateaus, which can be attributed to the quantum antiferromagnetic and quantum ferrimagnetic ground states. The magnetic-field-driven phase transition between the quantum antiferromagnetic and quantum ferrimagnetic ground states manifests itself at nonzero temperatures by a local minimum of the negativity, which is followed by a peculiar field-induced rise of the negativity observable in a range of moderately strong magnetic fields. The rising temperature generally smears out abrupt jumps and plateaus of the negativity, which cannot be distinguished in the relevant dependencies above a certain temperature. It is shown that the thermal entanglement is most persistent against rising temperature at the magnetic field, for which an energy gap between a ground state and a first excited state is highest. Besides, temperature variations of the negativity of the spin-1 Heisenberg dimer with an easy-axis single-ion anisotropy may exhibit a singular point-kink, at which the negativity has discontinuity in its first derivative. The homodinuclear nickel complex [Ni2(Medpt)2(μ-ox)(H2O)2](ClO4)2·2H2O provides a suitable experimental platform of the antiferromagnetic spin-1 Heisenberg dimer, which allowed us to estimate a strength of the bipartite entanglement between two exchange-coupled Ni2+ magnetic ions on the grounds of the interaction constants reported previously from the fitting procedure of the magnetization data. It is verified that the negativity of this dinuclear compound is highly magnetic-field-orientation dependent due to presence of a relatively strong uniaxial single-ion anisotropy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Pirandola ◽  
Carlo Ottaviani ◽  
Christian S. Jacobsen ◽  
Gaetana Spedalieri ◽  
Samuel L. Braunstein ◽  
...  

AbstractWe consider a quantum relay that is used by two parties to perform several continuous-variable protocols of quantum communication, from entanglement distribution (swapping and distillation) to quantum teleportation, and quantum key distribution. The theory of these protocols is suitably extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise in the bosonic environment. In the worst-case scenario where bipartite entanglement is completely lost at the relay, we show that the various protocols can be reactivated by the assistance of classical (separable) correlations in the environment. In fact, above a critical amount, these correlations are able to guarantee the distribution of a weaker form of entanglement (quadripartite), which can be localized by the relay into a stronger form (bipartite) that is exploitable by the parties. Our findings are confirmed by a proof-of-principle experiment where we show, for the first time, that memory effects in the environment can drastically enhance the performance of a quantum relay, well beyond the single-repeater bound for quantum and private communications.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Asma Bashir ◽  
Muhammad Abdul Wasay

AbstractThe classical and quantum dynamics of two particles constrained on $$S^1$$ S 1 is discussed via Dirac’s approach. We show that when state is maximally entangled between two subsystems, the product of dispersion in the measurement reduces. We also quantify the upper bound on the external field $$\vec {B}$$ B → such that $$\vec {B}\ge \vec {B}_{upper }$$ B → ≥ B → upper implies no reduction in the product of dispersion pertaining to one subsystem. Further, we report on the cut-off value of the external field $$\vec {B}_{cutoff }$$ B → cutoff , above which the bipartite entanglement is lost and there exists a direct relationship between uncertainty of the composite system and the external field. We note that, in this framework it is possible to tune the external field for entanglement/unentanglement of a bipartite system. Finally, we show that the additional terms arising in the quantum Hamiltonian, due to the requirement of Hermiticity of operators, produce a shift in the energy of the system.


Sign in / Sign up

Export Citation Format

Share Document