phase decoherence
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Laser Physics ◽  
2021 ◽  
Vol 31 (10) ◽  
pp. 105201
Author(s):  
Qiong Wang ◽  
Lan Xu ◽  
Ji-Bing Yuan ◽  
Zhi He

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Abdelghany ◽  
A.-B. A. Mohamed ◽  
M. Tammam ◽  
Watson Kuo ◽  
H. Eleuch

AbstractWe formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one qubit while the other two are served as quantum memories. Our study reveals that the entanglement between the nearest neighbors plays an important role in reducing the uncertainty in measurement outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase decoherence depends on the choice of the observable pair. In the absence of phase decoherence, Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.


2020 ◽  
Vol 47 (20) ◽  
Author(s):  
X.‐J. Zhang ◽  
O. Agapitov ◽  
A. V. Artemyev ◽  
D. Mourenas ◽  
V. Angelopoulos ◽  
...  

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
Aoibheann Margalit ◽  
Carlo R. Contaldi ◽  
Mauro Pieroni

2018 ◽  
Vol 25 (03) ◽  
pp. 1850015
Author(s):  
A.-B. A. Mohamed ◽  
M. S. Abdalla ◽  
A.-S. F. Obada

Two two-level systems generated by su(2) algebra are initially prepared in a maximum nonsymmetric Bell state and having no mutual interaction. Each su(2)-system spatially interacts with two-mode cavity field in the nondegenerate parametric amplifier type cast through operators governed by su(1, 1) Lie algebra. An analytical description for the time evolution of the final state of the total system with the effect of intrinsic decoherence is found. Therefore, the robustness of the quantum correlations between the two su(2)-system is investigated by means of geometric quantum discord, measurement-induced nonlocality and negativity. We analyze in some detail the influence of initial coherence intensities, detuning and phase decoherence parameters on the steady-state correlation. We find that the steady-state correlations can be generated and enhanced by controlling the parameters of: the initial coherence intensities, the Bargmman index and the detuning. It is shown that the phenomenon of sudden death and re-birth of entanglement, and the sudden changes of the geometric quantum correlation can be controlled by these parameters. We find that the robustness of the quantum correlation can be greatly enhanced by the Bargmman index and the resonance detuning. Negativity is the measure most susceptible to phase decoherence, while geometric quantum discord and measurement-induced nonlocality are the more robust measures.


Sign in / Sign up

Export Citation Format

Share Document