scholarly journals Projective phase measurements in one-dimensional Bose gases

2018 ◽  
Vol 5 (5) ◽  
Author(s):  
Yuri Daniel van Nieuwkerk ◽  
Jörg Schmiedmayer ◽  
Fabian Essler

We consider time-of-flight measurements in split one-dimensional Bose gases. It is well known that the low-energy sector of such systems can be described in terms of two compact phase fields \hat{\phi}_{a,s}(x)ϕ̂a,s(x). Building on existing results in the literature we discuss how a single projective measurement of the particle density after trap release is in a certain limit related to the eigenvalues of the vertex operator e^{i\hat{\phi}_a(x)}eiϕ̂a(x). We emphasize the theoretical assumptions underlying the analysis of “single-shot” interference patterns and show that such measurements give direct access to multi-point correlation functions of e^{i\hat{\phi}_a(x)}eiϕ̂a(x) in a substantial parameter regime. For experimentally relevant situations, we derive an expression for the measured particle density after trap release in terms of convolutions of the eigenvalues of vertex operators involving both sectors of the two-component Luttinger liquid that describes the low-energy regime of the split condensate. This opens the door to accessing properties of the symmetric sector via an appropriate analysis of existing experimental data.

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Yuri Daniel van Nieuwkerk ◽  
Fabian Essler

We consider a model of two tunnel-coupled one-dimensional Bose gases with hard-wall boundary conditions. Bosonizing the model and retaining only the most relevant interactions leads to a decoupled theory consisting of a quantum sine-Gordon model and a free boson, describing respectively the antisymmetric and symmetric combinations of the phase fields. We go beyond this description by retaining the perturbation with the next smallest scaling dimension. This perturbation carries conformal spin and couples the two sectors. We carry out a detailed investigation of the effects of this coupling on the non-equilibrium dynamics of the model. We focus in particular on the role played by spatial inhomogeneities in the initial state in a quantum quench setup.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Xinxing Liu ◽  
Xiaoji Zhou ◽  
Wei Zhang ◽  
Thibault Vogt ◽  
Bo Lu ◽  
...  

2008 ◽  
Vol 77 (5) ◽  
Author(s):  
E. Fersino ◽  
G. Mussardo ◽  
A. Trombettoni
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
José Ángel Picazo-Bueno ◽  
Javier García ◽  
Vicente Micó

Digital holographic microscopy (DHM) is a well-known microscopy technique using an interferometric architecture for quantitative phase imaging (QPI) and it has been already implemented utilizing a large number of interferometers. Among them, single-element interferometers are of particular interest due to its simplicity, stability, and low cost. Here, we present an extremely simple common-path interferometric layout based on the use of a single one-dimensional diffraction grating for both illuminating the sample in reflection and generating the digital holograms. The technique, named single-element reflective digital holographic microscopy (SER-DHM), enables QPI and topography analysis of reflective/opaque objects using a single-shot operation principle. SER-DHM is experimentally validated involving different reflective samples.


Sign in / Sign up

Export Citation Format

Share Document