phase measurements
Recently Published Documents


TOTAL DOCUMENTS

933
(FIVE YEARS 160)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Henry H. Hunter ◽  
Ukadike C. Ugbolue ◽  
Graeme G. Sorbie ◽  
Wing-Kai Lam ◽  
Fergal M. Grace ◽  
...  

Abstract The purpose of this study was to compare swing time and golf club angle parameters during golf swings using three, two dimensional (2D) low cost, Augmented-Video-based-Portable-Systems (AVPS) (Kinovea, SiliconCoach Pro, SiliconCoach Live). Twelve right-handed golfers performed three golf swings whilst being recorded by a high-speed 2D video camera. Footage was then analysed using AVPS-software and the results compared using both descriptive and inferential statistics. There were no significant differences for swing time and the golf phase measurements between the 2D and 3D software comparisons. In general, the results showed a high Intra class Correlation Coefficient (ICC > 0.929) and Cronbach’s Coefficient Alpha (CCA > 0.924) reliability for both the kinematic and temporal parameters. The inter-rater reliability test for the swing time and kinematic golf phase measurements on average were strong. Irrespective of the AVPS software investigated, the cost effective AVPS can produce reliable output measures that benefit golf analyses.


Author(s):  
Zixin Zhao ◽  
Menghang Zhou ◽  
Yijun Du ◽  
Junxiang Li ◽  
Chen Fan ◽  
...  

Abstract Phase unwrapping plays an important role in optical phase measurements. In particular, phase unwrapping under heavy noise conditions remains an open issue. In this paper, a deep learning-based method is proposed to conduct the phase unwrapping task by combining Zernike polynomial fitting and a Swin-Transformer network. In this proposed method, phase unwrapping is regarded as a regression problem, and the Swin-Transformer network is used to map the relationship between the wrapped phase data and the Zernike polynomial coefficients. Because of the self-attention mechanism of the transformer network, the fitting coefficients can be estimated accurately even under extremely harsh noise conditions. Simulation and experimental results are presented to demonstrate the outperformance of the proposed method over the other two polynomial fitting-based methods. This is a promising phase unwrapping method in optical metrology, especially in electronic speckle pattern interferometry.


Author(s):  
Aleksandr Pustoshilov

The paper shows a simple method for detecting cycle slips in the carrier-phase measurements (including single frequency measurements) of navigation receivers with highly stable (hydrogen) reference oscillators by using approximation by high-degree polynomials.


2021 ◽  
Author(s):  
Christoph Jacobi ◽  
Kanykei Kandieva ◽  
Christina Arras

<p>In the lower ionospheric E region, shallow regions of high electron density are found, which are called sporadic E (ES) layers. ES layers consist of thin clouds of accumulated ions. They occur mainly at middle latitudes, and they are most frequently found during the summer season. ES are generally formed at heights between 90 and 120 km. At midlatitudes, their occurrence can be described through the wind shear theory. According to this theory, ES formation is due to interaction between the metallic ion concentration, the Earth’s magnetic field, and the vertical shear of the neutral wind. Here, we analyze ES occurrence rates (OR) obtained from ionospheric radio occultation measurements by the FORMOSAT-3/COSMIC constellation. To derive information on ES from RO, we use the Signal-to-Noise ratio (SNR) profiles of the GPS L1 phase measurements. If large SNR standard deviation values occur that are concentrated within a layer of less than 10 km thickness, we assume that the respective SNR profile disturbance is owing to an ES layer.</p><p>Midlatitude ES are found to be mainly connected with a migrating diurnal and semidiurnal component. Especially at high latitudes of the southern hemisphere, nonmigrating components such as a diurnal westward wave 2 and a semidiurnal westward wave 1 are also visible. Near the equator, a strong diurnal eastward wavenumber 3 component and a semidiurnal eastward wavenumber 2 component are found in summer and autumn. Terdiurnal and quarterdiurnal components are weaker than the diurnal and semidiurnal ones. We discuss seasonal and global distributions of migrating and nonmigrating components, and their relation to neutral wind shear derived from ground-based observations and numerical modeling.</p>


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
F. C. V. de Brito ◽  
I. G. da Paz ◽  
J. B. Araujo ◽  
Marcos Sampaio

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8354
Author(s):  
Américo Magalhães ◽  
Luísa Bastos ◽  
Dalmiro Maia ◽  
José Alberto Gonçalves

The use of GPS positioning and navigation capabilities in mobile phones is present in our daily lives for more than a decade, but never with the centimeter level of precision that can actually be reached with several of the most recent smartphones. The introduction of the new GNSS systems (Global Navigation Satellite Systems), the European system Galileo, is opening new horizons in a wide range of areas that rely on precise georeferencing, namely the mass market smartphones apps. The constant growth of this market has brought new devices with innovative capabilities in hardware and software. The introduction of the Android 7 by Google, allowing access to the GNSS raw code and phase measurements, and the arrival of the new chip from Broadcom BCM47755 providing dual frequency in some smartphones came to revolutionize the positioning performance of these devices as never seen before. The Xiaomi Mi8 was the first smartphone to combine those features, and it is the device used in this work. It is well known that it is possible to obtain centimeter accuracy with this kind of device in relative static positioning mode with distances to a reference station up to a few tens of kilometers, which we also confirm in this paper. However, the main purpose of this work is to show that we can also get good positioning accuracy using long baselines. We used the ability of the Xiaomi Mi8 to get dual frequency code and phase raw measurements from the Galileo and GPS systems, to do relative static positioning in post-processing mode using wide baselines, of more than 100 km, to perform precise surveys. The results obtained were quite interesting with RMSE below 30 cm, showing that this type of smartphone can be easily used as a low-cost device, for georeferencing and mapping applications. This can be quite useful in remote areas where the CORS networks are not dense or even not available.


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


2021 ◽  
Author(s):  
Daniel Mota ◽  
Erick Alves ◽  
Elisabetta Tedeschi

Manuscript submitted to the Twenty-second IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 2021).<div>Abstract: Dual-sequence current controllers of voltage source converters (VSCs) feature two separate rotating reference frames (RRFs), commonly named dq frames, and rely on techniques that isolate the positive and negative sequences of three-phase measurements. One of these techniques is the delayed signal cancellation (DSC). It is performed in the stationary reference frame (SRF), also known as αβ frame. The DSC combines old values of one axis with new values of the other axis of the SRF. The results are, then, transformed into the RRFs for use in the current controller. This filtering process introduces an extra layer of complexity for dual-sequence current controllers, which could otherwise operate solely in the RRFs. This paper introduces a frequency adaptive DSC method that operates directly in the RRF. Moreover, an averaging of two of the proposed DSC filters with contiguous integer delays is employed for reducing discretization errors caused by grid frequency excursions. A formal proof of the equivalence between the αβ and dq DSC methods is presented. Furthermore, computer simulations of a case study support the interpretation of the results.</div>


2021 ◽  
Vol 6 (24) ◽  
pp. 312-325
Author(s):  
Nazrin Afiq Abdul Rahman ◽  
Tajul Ariffin Musa ◽  
Wan Anom Wan Aris ◽  
Abdullah Hisam Omar

The concept of N-RTK positioning has been extensively developed in order to better model the distance-dependent errors of GPS carrier-phase measurements. These errors can be separated into a frequency-dependent or dispersive component (i.e., the ionospheric delay) and a non-dispersive component (i.e., the tropospheric delay and orbit biases) to express the network correction in order to attain better modelling of GPS distance dependent errors. However, the N-RTK performance may degrades due to severe atmospheric irregularities that would seriously affect the modelling of the GPS distance-dependent errors, thus affecting the quality of network correction generation. The development of integrity monitoring for network correction would be great idea to identify the quality and reliability of network correction data dissemination. Therefore, this paper aims to estimates the trend of GPS dispersive and non-dispersive network correction to supports future development of integrity monitoring for network correction of ISKANDARnet N-RTK positioning system. The first part of this paper is to extract the GPS dispersive and non-dispersive network residual components. This part includes the double-differencing technique, ambiguity resolution and carrier-phased linear combination in the process. The LIM then are applied for user network coefficient value computation purpose in the second part. Finally, the GPS dispersive and non-dispersive network correction can be generated with GF and IF network correction algorithm respectively. The trend of GPS dispersive and non-dispersive network correction is expected to aid the estimation and realization of threshold limit value for development of integrity monitoring for network correction of ISKANDARnet N-RTK positioning system.


Sign in / Sign up

Export Citation Format

Share Document