sine gordon model
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 41)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Patrick Dorey ◽  
Anastasia Gorina ◽  
Ilya Perapechka ◽  
Tomasz Romańczukiewicz ◽  
Yakov Shnir

Abstract We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the ϕ4 model, and a ϕ6-like model with three degenerate vacua. We find a rich variety of behaviours, including integrability breaking, resonance windows with increasingly irregular patterns, and new types of windows near the ϕ6-like regime. False vacua, extra kink modes and kink fragmentation play important roles in the explanations of these phenomena. Our numerical studies are backed up by detailed analytical considerations.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
João G. F. Campos ◽  
Azadeh Mohammadi

Abstract We study the collision of a kink and an antikink in the double sine-Gordon model with and without the excited vibrational mode. In the latter case, we find that there is a limited range of the parameters where the resonance windows exist, despite the existence of a vibrational mode. Still, when the vibrational mode is initially excited, its energy can turn into translational energy after the collision. This creates one-bounce as well as a rich structure of higher-bounce resonance windows that depend on the wobbling phase being in or out of phase at the collision and the wobbling amplitude being sufficiently large. When the vibrational mode is excited, the modified structure of one-bounce windows is observed in the whole range of the model’s parameters, and the resonant interval with higher-bounce windows gradually increases with the wobbling amplitude. We estimated the center of the one-bounce windows using a simple analytical approximation for the wobbling evolution. The kinks’ final wobbling frequency is Lorentz contracted, which is simply derived from our equations. We also report that the maximum energy density value always has a smooth behavior in the resonance windows.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Olalla Castro-Alvaredo ◽  
David Horvath

The quantum sine-Gordon model is the simplest massive interacting integrable quantum field theory whose two-particle scattering matrix is generally non-diagonal. As such, it is a model that has been extensively studied, especially in the context of the bootstrap program. In this paper we compute low particle-number form factors of a special local field known as the branch point twist field, whose correlation functions are building blocks for measures of entanglement. We consider the attractive regime where the theory possesses a particle spectrum consisting of a soliton, an antisoliton (of opposite U(1) charges) and several (neutral) breathers. In the breather sector we exploit the fusion procedure to compute form factors of heavier breathers from those of lighter ones. We apply our results to the study of the entanglement dynamics after a small mass quench and for short times. We show that in the presence of two or more breathers the von Neumann and Rényi entropies display undamped oscillations in time, whose frequencies are proportional to the even breather masses and whose amplitudes are proportional to the breather's one-particle form factor.


2021 ◽  
pp. 115445
Author(s):  
Ananda Roy ◽  
Dirk Schuricht ◽  
Johannes Hauschild ◽  
Frank Pollmann ◽  
Hubert Saleur

Author(s):  
Dorothea Bahns ◽  
Klaus Fredenhagen ◽  
Kasia Rejzner

AbstractThe Haag–Kastler net of local von Neumann algebras is constructed in the ultraviolet finite regime of the Sine–Gordon model, and its equivalence with the massive Thirring model is proved. In contrast to other authors, we do not add an auxiliary mass term, and we work completely in Lorentzian signature. The construction is based on the functional formalism for perturbative Algebraic Quantum Field Theory together with estimates originally derived within Constructive Quantum Field Theory and adapted to Lorentzian signature. The paper extends previous work by two of us.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Takashi Yanagisawa

Abstract We investigate the renormalization group theory of the generalized multi-vertex sine-Gordon model by employing the dimensional regularization method and also the Wilson renormalization group method. The vertex interaction is given by $\cos(k_j\cdot \phi)$, where $k_j$ ($j=1,2,\ldots,M$) are momentum vectors and $\phi$ is an $N$-component scalar field. The beta functions are calculated for the sine-Gordon model with multiple cosine interactions. The second-order correction in the renormalization procedure is given by the two-point scattering amplitude for tachyon scattering. We show that new vertex interaction with the momentum vector $k_{\ell}$ is generated from two vertex interactions with vectors $k_i$ and $k_j$ when $k_i$ and $k_j$ meet the condition $k_{\ell}=k_i\pm k_j$, called the triangle condition. A further condition $k_i\cdot k_j=\pm 1/2$ is required within the dimensional regularization method. The renormalization group equations form a set of closed equations when $\{k_j\}$ form an equilateral triangle for $N=2$ or a regular tetrahedron for $N=3$. The Wilsonian renormalization group method gives qualitatively the same result for beta functions.


Sign in / Sign up

Export Citation Format

Share Document