scholarly journals Spotlight on cervical vagus nerve stimulation for the treatment of primary headache disorders: a review

2018 ◽  
Vol Volume 11 ◽  
pp. 1613-1625 ◽  
Author(s):  
Ilana S. Lendvai ◽  
Ayline Maier ◽  
Dirk Scheele ◽  
Rene Hurlemann ◽  
Thomas M. Kinfe
Cephalalgia ◽  
2019 ◽  
Vol 39 (9) ◽  
pp. 1180-1194 ◽  
Author(s):  
Dylan Jozef Hendrik Augustinus Henssen ◽  
Berend Derks ◽  
Mats van Doorn ◽  
Niels Verhoogt ◽  
Anne-Marie Van Cappellen van Walsum ◽  
...  

Background Non-invasive stimulation of the vagus nerve has been proposed as a new neuromodulation therapy to treat primary headache disorders, as the vagus nerve is hypothesized to modulate the headache pain pathways in the brain. Vagus nerve stimulation can be performed by placing an electrode on the ear to stimulate the tragus nerve, which contains about 1% of the vagus fibers. Non-invasive vagus nerve stimulation (nVNS) conventionally refers to stimulation of the cervical branch of the vagus nerve, which is made up entirely of vagal nerve fibers. While used interchangeably, most of the research to date has been performed with nVNS or an implanted vagus nerve stimulation device. However, the exact mechanism of action of nVNS remains hypothetical and no clear overview of the effectiveness of nVNS in primary headache disorders is available. Methods In the present study, the clinical trials that investigated the effectiveness, tolerability and safety of nVNS in primary headache disorders were systematically reviewed. The second part of this study reviewed the central connections of the vagus nerve. Papers on the clinical use of nVNS and the anatomical investigations were included based on predefined criteria, evaluated, and results were reported in a narrative way. Results The first part of this review shows that nVNS in primary headache disorders is moderately effective, safe and well-tolerated. Regarding the anatomical review, it was reported that fibers from the vagus nerve intertwine with fibers from the trigeminal, facial, glossopharyngeal and hypoglossal nerves, mostly in the trigeminal spinal tract. Second, the four nuclei of the vagus nerve (nuclei of the solitary tract, nucleus ambiguus, spinal nucleus of the trigeminal nerve and dorsal motor nucleus (DMX)) show extensive interconnections. Third, the efferents from the vagal nuclei that receive sensory and visceral input (i.e. nuclei of the solitary tract and spinal nucleus of the trigeminal nerve) mainly course towards the main parts of the neural pain matrix directly or indirectly via other vagal nuclei. Conclusion The moderate effectiveness of nVNS in treating primary headache disorders can possibly be linked to the connections between the trigeminal and vagal systems as described in animals.


Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1370-1384
Author(s):  
Stephen D Silberstein ◽  
Hsiangkuo Yuan ◽  
Umer Najib ◽  
Jessica Ailani ◽  
Andreia Lopes de Morais ◽  
...  

Background Non-invasive vagus nerve stimulation (nVNS) is a proven treatment for cluster headache and migraine. Several possible mechanisms of action by which nVNS mitigates headache have been identified. Methods We conducted a narrative review of recent scientific and clinical research into nVNS for headache, including findings from mechanistic studies and their possible relationships to the clinical effects of nVNS. Results Findings from animal and human studies have provided possible mechanistic explanations for nVNS efficacy in headache involving four core areas: Autonomic nervous system functions; cortical spreading depression inhibition; neurotransmitter regulation; and nociceptive modulation. We discuss how overlap and interplay among these areas may underlie the utility of nVNS in the context of clinical evidence supporting its safety and efficacy as acute and preventive therapy for both cluster headache and migraine. Possible future nVNS applications are also discussed. Conclusion Significant progress over the past several years has yielded valuable mechanistic and clinical evidence that, combined with the excellent safety and tolerability profile of nVNS, suggests that it should be considered a first-line treatment for both acute and preventive treatment of cluster headache, an effective option for acute treatment of migraine, and a highly relevant, practical option for migraine prevention.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S1.1-S1
Author(s):  
Bert Vargas ◽  
Eric Liebler ◽  
Stephen Bunt ◽  
Charlene Supent-Bell

ObjectiveEvaluate the efficacy and safety of non-invasive vagus nerve stimulation (nVNS) for the treatment of post-traumatic headache (PTH).BackgroundWorldwide, ∼69 million people per year sustain a traumatic brain injury (TBI), many of whom develop PTH. Clinicians often treat PTH with drugs approved for primary headache disorders, and many patients self-treat with over-the-counter agents but have inadequate pain relief. There has been little study of therapies for PTH, and safe, effective treatments are needed.Design/MethodsThis randomized, double-blind, sham-controlled, parallel-group pilot study is enrolling adults who present 1–4 weeks after a head injury, meet International Classification of Headache Disorders 3rd edition (ICHD-3) criteria for acute headache attributed to mild TBI, and have ≥2 headaches/week with a migraine or probable migraine phenotype. After a 2-week run-in period, subjects are randomly assigned (1:1 allocation) to receive daily preventive therapy and as-needed acute treatment with nVNS or a sham device. Preventive therapy consists of two 120-second stimulations 3 times daily. Acute treatment comprises 2 stimulations at headache onset and 2 stimulations 20 minutes after the start of initial treatment. Subjects are not to use acute rescue medication for 120 minutes post-treatment. One North American site will enroll ≤80 subjects. The expected duration is 12 months (enrollment, 9 months; participation, 14 weeks).ResultsThe primary effectiveness end point is decrease in pain (on a 7-point scale) 60 minutes post-treatment for all treated headache attacks. Secondary end points include decrease in the frequency of headache days between the run-in period and the last 2 weeks of the double-blind period and responder rates (ie, percentages of subjects with ≥50% decrease in attack frequency). The primary safety end point is the incidence of treatment-related serious adverse events.ConclusionsThis study will assess the efficacy and safety of nVNS as a novel therapy for PTH.


2009 ◽  
Vol 3;12 (3;5) ◽  
pp. 621-628 ◽  
Author(s):  
Terrence L. Trentman

Background: Millions of patients suffer from medically refractory and disabling primary headache disorders. This problem has led to a search for new and innovative treatment modalities, including neuromodulation of the occipital nerves. Objectives: The primary aim of this study is to describe an implantation technique for the Bion® microstimulator and document stimulation parameters and stimulation maps after Bion placement adjacent to the greater occipital nerve. The secondary aim is to document outcome measures one year post-implant. Design: Prospective, observational feasibility study. Methods: Nine patients with medically refractory primary headache disorders participated in this study. Approximately 6 months after Bion insertion, stimulation parameters and maps were documented for all patients. At one year, outcome measures were collected including the Migraine Disability Assessment Score. Results: At 6 months, the mean perception threshold was 0.47 mA, while the mean discomfort threshold was 6.8 mA (stimulation range 0.47 – 6.8 mA). The mean paresthesia threshold was 1.64 mA and the mean usage range was 16.0. There were no major complications reported such as device migration, infection, or erosion. One patient stopped using her Bion before the 12-month follow-up visit. At one year, 7 of the 8 patients were judged as having obtained fair or better results in terms of reduction of disability; 5 patients had greater than a 90% reduction in disability. Limitations: Small, heterogeneous patient population without control group. Not blinded or randomized. Conclusion: The Bion can be successfully inserted adjacent to the greater occipital nerve in an effort to treat refractory primary headache disorders. This microstimulator may provide effective occipital stimulation and headache control while minimizing the risks associated with percutaneous or paddle leads implanted subcutaneously in the occipital region. Key words: Chronic headache, migraine, cluster headache, peripheral nerve stimulation


2019 ◽  
Vol 9 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Peter J. Goadsby

Purpose of reviewTo review 5 new areas in primary headache disorders, especially migraine and cluster headache.Recent findingsCalcitonin gene-related peptide (CGRP) receptor antagonists (gepants—rimegepant and ubrogepant) and serotonin 5-HT1F receptor agonists (ditans—lasmiditan) have completed phase 3 clinical trials and will soon offer novel, effective, well-tolerated nonvasoconstrictor options to treat acute migraine. CGRP preventive treatment is being revolutionized after the licensing of 3 monoclonal antibodies (MABs), erenumab, fremanezumab, and galcanezumab, with eptinezumab to follow, especially designed for migraine; they are effective and well tolerated. For patients seeking a nondrug therapy, neuromodulation approaches, single-pulse transcranial magnetic stimulation, noninvasive vagus nerve stimulation (nVNS), and external trigeminal nerve stimulation, represent licensed, well-tolerated approaches to migraine treatment. For the acute treatment of episodic cluster headache, nVNS is effective, well tolerated, and licensed; nVNS is effective and well tolerated in preventive treatment of cluster headache. The CGRP MAB galcanezumab was effective and well tolerated in a placebo-controlled trial in the preventive treatment of episodic cluster headache. Sphenopalatine ganglion stimulation has been shown to be effective and well tolerated in 2 randomized sham-controlled studies on chronic cluster headache. Understanding the premonitory (prodromal) phase of migraine during which patients experience symptoms such as yawning, tiredness, cognitive dysfunction, and food cravings may help explain apparent migraine triggers in some patients, thus offering better self-management.SummaryHeadache medicine has made remarkable strides, particularly in understanding migraine and cluster headache in the past 5 years. For the most common reason to visit a neurologist, therapeutic advances offer patients reduced disability and neurologists a rewarding, key role in improving the lives of those with migraine and cluster headache.


2012 ◽  
Vol 16 (6) ◽  
pp. 557-564 ◽  
Author(s):  
Ann Chang Brewer ◽  
Terrence L. Trentman ◽  
Michael G. Ivancic ◽  
Bert B. Vargas ◽  
Alanna M. Rebecca ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 1381-1387
Author(s):  
Ying Yuan ◽  
Jie Wang ◽  
Dongyu Wu ◽  
Dahua Zhang ◽  
Weiqun Song

Purpose Severe dysphagia with weak pharyngeal peristalsis after dorsal lateral medullary infarction (LMI) requires long-term tube feeding. However, no study is currently available on therapeutic effectiveness in severe dysphagia caused by nuclear damage of vagus nerve after dorsal LMI. The purpose of the present investigation was to explore the potential of transcutaneous vagus nerve stimulation (tVNS) to improve severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Method We assessed the efficacy of 6-week tVNS in a 28-year-old woman presented with persisting severe dysphagia after dorsal LMI who had been on nasogastric feeding for 6 months. tVNS was applied for 20 min twice a day, 5 days a week, for 6 weeks. The outcome measures included saliva spitted, Swallow Function Scoring System, Functional Oral Intake Scale, Clinical Assessment of Dysphagia With Wallenberg Syndrome, Yale Pharyngeal Residue Severity Rating Scale, and upper esophagus X-ray examination. Results After tVNS, the patient was advanced to a full oral diet without head rotation or spitting. No saliva residue was found in the valleculae and pyriform sinuses. Contrast medium freely passed through the upper esophageal sphincter. Conclusion Our findings suggest that tVNS might provide a useful means for recovery of severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Supplemental Material https://doi.org/10.23641/asha.9755438


Sign in / Sign up

Export Citation Format

Share Document