scholarly journals A Review of Some Analytical Studies of Finite Amplitude Baroclinic Waves, Including a New Algorithm for the Saturation Effects of Static Stability and Baroclinicity Variations

1982 ◽  
Vol 60 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Barry Saltzman ◽  
Chung-Muh Tang
2010 ◽  
Vol 67 (2) ◽  
pp. 434-451 ◽  
Author(s):  
Sukyoung Lee

Abstract A two-layer quasigeostrophic model is used to study the equilibration of baroclinic waves. In this model, if the background flow is relaxed toward a jetlike profile, a finite-amplitude baroclinic wave solution can be realized in both supercritical and subcritical regions of the model’s parameter space. Analyses of the model equations and numerical model calculations indicate that the finite-amplitude wave equilibration hinges on the breaking of Rossby waves before they reach their critical latitude. This “jetward” wave breaking results in an increase in the upper-layer wave generation and a reduction in the vertical phase tilt. This change in the phase tilt has a substantial impact on the Ekman pumping, as it weakens the damping on the lower-layer wave for some parameter settings and enables the Ekman pumping to serve as a source of wave growth at other settings. Together, these processes can account for the O(1)-amplitude wave equilibration. From a potential vorticity (PV) perspective, the wave breaking reduces the meridional scale of the upper-layer eddy PV flux, which destabilizes the mean flow. This is followed by a strengthening of the lower-layer eddy PV flux, which weakens the lower-layer PV gradient and constrains the growth of the lower-layer eddy PV. The same jetward wave breaking focuses the upper-layer PV flux toward the jet center where the upper-layer PV gradient is greatest. This results in an intensification of the upper-layer eddy PV relative to lower-layer eddy PV. Because of this large ratio, the upper-layer eddy PV plays the primary role in inducing the upper- and lower-layer eddy streamfunction fields, decreasing the vertical phase tilt. As a result, the Ekman pumping on the eddies is weakened, and for some parameter settings the Ekman pumping can even act as a wave source, contributing toward O(1)-amplitude wave equilibration. By reducing the horizontal shear of the zonal wind, the same wave breaking process weakens the barotropic decay, which also contributes to the wave amplification.


2019 ◽  
Author(s):  
Daniel Kunkel ◽  
Peter Hoor ◽  
Thorsten Kaluza ◽  
Jörn Ungermann ◽  
Björn Kluschat ◽  
...  

Abstract. Stratosphere–troposphere exchange within extratropical cyclones provides the potential for anthropogenic and natural surface emissions to rapidly reach the stratosphere as well as for ozone from the stratosphere to penetrate deep into the troposphere, even down into the boundary layer. The efficiency of this process directly influences the surface climate, the chemistry in the stratosphere, the chemical composition of the extratropical transition layer, and surface pollution levels. Here, we present evidence for a mixing process within extratropical cyclones which has gained only little attention so far and which fosters the transport of tropospheric air masses into the stratosphere in ridges of baroclinic waves. We analyzed airborne measurement data from a research flight of the WISE (Wave driven isentropic exchange) campaign over the North Atlantic in autumn 2017 supported by forecasts from a numerical weather prediction model and trajectory calculations. Further detailed process understanding is obtained from experiments of idealized baroclinic life cycles. The major outcome of this analysis is that air masses mix in the region of the tropopause and potentially enter the stratosphere in ridges of baroclinic waves at the anti-cyclonic side of jet without changing their potential temperature drastically. This quasi-isentropic exchange occurs above the outflow of warm conveyor belts, in regions which exhibit enhanced static stability in the lower stratosphere and a Kelvin–Helmholtz instability across the tropopause. The enhanced static stability is related to radiative cooling below the tropopause and the presence of small scale waves. The Kelvin–Helmholtz instability is related to vertical shear of the horizontal wind associated to small scale waves at the upper edge of the jet-stream. The instability leads to the occurrence of turbulence and consequent mixing of trace gases in the tropopause region. While the overall relevance of this process has yet to be assessed, it has the potential to significantly modify the chemical composition of the extratropical transition layer in the lowermost stratosphere in regions which have previously gained only little attention in terms of mixing in baroclinic waves.


2019 ◽  
Vol 19 (19) ◽  
pp. 12607-12630 ◽  
Author(s):  
Daniel Kunkel ◽  
Peter Hoor ◽  
Thorsten Kaluza ◽  
Jörn Ungermann ◽  
Björn Kluschat ◽  
...  

Abstract. Stratosphere–troposphere exchange within extratropical cyclones provides the potential for anthropogenic and natural surface emissions to rapidly reach the stratosphere as well as for ozone from the stratosphere to penetrate deep into the troposphere, even down into the boundary layer. The efficiency of this process directly influences the surface climate, the chemistry in the stratosphere, the chemical composition of the extratropical transition layer, and surface pollution levels. Here, we present evidence for a mixing process within extratropical cyclones which has gained only a small amount of attention so far and which fosters the transport of tropospheric air masses into the stratosphere in ridges of baroclinic waves. We analyzed airborne measurement data from a research flight of the WISE (Wave-driven ISentropic Exchange) campaign over the North Atlantic in autumn 2017, supported by forecasts from a numerical weather prediction model and trajectory calculations. Further detailed process understanding is obtained from experiments of idealized baroclinic life cycles. The major outcome of this analysis is that air masses mix in the region of the tropopause and potentially enter the stratosphere in ridges of baroclinic waves at the anticyclonic side of the jet without changing their potential temperature drastically. This quasi-isentropic exchange occurs above the outflow of warm conveyor belts, in regions which exhibit enhanced static stability in the lower stratosphere and a Kelvin–Helmholtz instability across the tropopause. The enhanced static stability is related to radiative cooling below the tropopause and the presence of small-scale waves. The Kelvin–Helmholtz instability is related to vertical shear of the horizontal wind associated with small-scale waves at the upper edge of the jet stream. The instability leads to the occurrence of turbulence and consequent mixing of trace gases in the tropopause region. While the overall relevance of this process has yet to be assessed, it has the potential to significantly modify the chemical composition of the extratropical transition layer in the lowermost stratosphere in regions which have previously gained a small amount of attention in terms of mixing in baroclinic waves.


Sign in / Sign up

Export Citation Format

Share Document