Finite-Amplitude Equilibration of Baroclinic Waves on a Jet

2010 ◽  
Vol 67 (2) ◽  
pp. 434-451 ◽  
Author(s):  
Sukyoung Lee

Abstract A two-layer quasigeostrophic model is used to study the equilibration of baroclinic waves. In this model, if the background flow is relaxed toward a jetlike profile, a finite-amplitude baroclinic wave solution can be realized in both supercritical and subcritical regions of the model’s parameter space. Analyses of the model equations and numerical model calculations indicate that the finite-amplitude wave equilibration hinges on the breaking of Rossby waves before they reach their critical latitude. This “jetward” wave breaking results in an increase in the upper-layer wave generation and a reduction in the vertical phase tilt. This change in the phase tilt has a substantial impact on the Ekman pumping, as it weakens the damping on the lower-layer wave for some parameter settings and enables the Ekman pumping to serve as a source of wave growth at other settings. Together, these processes can account for the O(1)-amplitude wave equilibration. From a potential vorticity (PV) perspective, the wave breaking reduces the meridional scale of the upper-layer eddy PV flux, which destabilizes the mean flow. This is followed by a strengthening of the lower-layer eddy PV flux, which weakens the lower-layer PV gradient and constrains the growth of the lower-layer eddy PV. The same jetward wave breaking focuses the upper-layer PV flux toward the jet center where the upper-layer PV gradient is greatest. This results in an intensification of the upper-layer eddy PV relative to lower-layer eddy PV. Because of this large ratio, the upper-layer eddy PV plays the primary role in inducing the upper- and lower-layer eddy streamfunction fields, decreasing the vertical phase tilt. As a result, the Ekman pumping on the eddies is weakened, and for some parameter settings the Ekman pumping can even act as a wave source, contributing toward O(1)-amplitude wave equilibration. By reducing the horizontal shear of the zonal wind, the same wave breaking process weakens the barotropic decay, which also contributes to the wave amplification.

2013 ◽  
Vol 70 (8) ◽  
pp. 2629-2649 ◽  
Author(s):  
Ludivine Oruba ◽  
Guillaume Lapeyre ◽  
Gwendal Rivière

Abstract The motion of surface depressions evolving in a background meandering baroclinic jet is investigated using a two-layer quasigeostrophic model on a beta plane. Synoptic-scale finite-amplitude cyclones are initialized in the lower and upper layer to the south of the jet in a configuration favorable to their baroclinic interaction. The lower-layer cyclone is shown to move across the jet axis from its warm-air to cold-air side. It is the presence of a poleward-oriented barotropic potential vorticity (PV) gradient that makes possible the cross-jet motion through the beta-drift mechanism generalized to a baroclinic atmospheric context. The potential vorticity gradient associated with the jet is responsible for the dispersion of Rossby waves by the cyclones and the development of an anticyclonic anomaly in the upper layer. This anticyclone forms a PV dipole with the upper-layer cyclone that nonlinearly advects the lower-layer cyclone across the jet. In addition, the background deformation is shown to modulate the cross-jet advection. Cyclones evolving in a deformation-dominated environment (south of troughs) are strongly stretched while those evolving in a rotation-dominated environment (south of ridges) remain quasi isotropic. It is shown that the more stretched cyclones trigger a more efficient dispersion of energy, create a stronger upper-layer anticyclone, and move perpendicularly to the jet faster than the less stretched ones. Both the intensity and location of the upper-layer anticyclone explain the distinct cross-jet speeds. A statistical study consisting in initializing cyclones at different locations south of the jet core confirms that the cross-jet motion is faster for the more meridionally elongated cyclones evolving in areas of strongest barotropic PV gradient.


2018 ◽  
Vol 146 (12) ◽  
pp. 4099-4114 ◽  
Author(s):  
Paolo Ghinassi ◽  
Georgios Fragkoulidis ◽  
Volkmar Wirth

AbstractUpper-tropospheric Rossby wave packets (RWPs) are important dynamical features, because they are often associated with weather systems and sometimes act as precursors to high-impact weather. The present work introduces a novel diagnostic to identify RWPs and to quantify their amplitude. It is based on the local finite-amplitude wave activity (LWA) of Huang and Nakamura, which is generalized to the primitive equations in isentropic coordinates. The new diagnostic is applied to a specific episode containing large-amplitude RWPs and compared with a more traditional diagnostic based on the envelope of the meridional wind. In this case, LWA provides a more coherent picture of the RWPs and their zonal propagation. This difference in performance is demonstrated more explicitly in the framework of an idealized barotropic model simulation, where LWA is able to follow an RWP into its fully nonlinear stage, including cutoff formation and wave breaking, while the envelope diagnostic yields reduced amplitudes in such situations.


2019 ◽  
Vol 878 ◽  
pp. 481-501 ◽  
Author(s):  
James G. Herterich ◽  
Frédéric Dias

Recent modelling work has shown that abrupt bathymetric transitions can produce dramatic amplifications of long waves, under the influence of both nonlinearity and dispersion. Here, the evolution of wave packets towards a vertical wall over a varying bathymetry is investigated with a one-dimensional conformal-mapping spectral code. In this system, wave breaking, runup and reflection, wave interference and bathymetric effects are highlighted. Wave breaking is examined with respect to geometric, kinematic and energetic conditions, with consistent results. The breaking strength is characterized for spilling and plunging based on initial wave period and amplitude. Non-breaking waves are amplified by reflection, interference and the bathymetry leading to large runups. In a typical example inspired by a real-world bathymetry, the maximum runup amplification approaches a factor of 12 – large enough for a 3 m amplitude wave to overtop a 30 m cliff.


1997 ◽  
Vol 102 (5) ◽  
pp. 3079-3079
Author(s):  
Gene Czerwinski ◽  
Alex Voishvillo ◽  
Sergei Alexandrov ◽  
Alex Terekhov

Sign in / Sign up

Export Citation Format

Share Document