scholarly journals Multiple Weather Regimes in the Summertime North Atlantic Circulation

1999 ◽  
Vol 77 (2) ◽  
pp. 483-494 ◽  
Author(s):  
Hitoshi Mukougawa ◽  
Hitoshi Sato
2017 ◽  
Vol 143 (708) ◽  
pp. 2960-2972 ◽  
Author(s):  
Erica Madonna ◽  
Camille Li ◽  
Christian M. Grams ◽  
Tim Woollings

2014 ◽  
Vol 44 (1) ◽  
pp. 179-201 ◽  
Author(s):  
Nicolas Barrier ◽  
Christophe Cassou ◽  
Julie Deshayes ◽  
Anne-Marie Treguier

Abstract A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO−), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO− induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO− conditions. These responses are driven by changes in deep water formation in the Labrador Sea.


2018 ◽  
Vol 144 (713) ◽  
pp. 1140-1151 ◽  
Author(s):  
Andrew J. Charlton‐Perez ◽  
Laura Ferranti ◽  
Robert W. Lee

2020 ◽  
Vol 33 (11) ◽  
pp. 4769-4785 ◽  
Author(s):  
Paolo Ruggieri ◽  
M. Carmen Alvarez-Castro ◽  
Panos Athanasiadis ◽  
Alessio Bellucci ◽  
Stefano Materia ◽  
...  

AbstractMeridional transport of heat by transient atmospheric eddies is a key component of the energy budget of the middle- and high-latitude regions. The heat flux at relevant frequencies is also part of a dynamical interaction between eddies and mean flow. In this study we investigate how the poleward heat flux by high-frequency atmospheric transient eddies is modulated by North Atlantic weather regimes in reanalysis data. Circulation regimes are estimated via a clustering method, a jet-latitude index, and a blocking index. Heat transport is defined as advection of moist static energy. The focus of the analysis is on synoptic frequencies but results for slightly longer time scales are reported. Results show that the synoptic eddy heat flux is substantially modulated by midlatitude weather regimes on a regional scale in midlatitude and polar regions. In a zonal-mean sense, the phases of the North Atlantic Oscillation do not significantly change the high-latitude synoptic heat flux, whereas Scandinavian blocking and the Atlantic ridge are associated with an intensification. A close relationship between high-latitude (midlatitude) heat flux and Atlantic jet speed (latitude) is found. The relationship between extreme events of synoptic heat flux and circulation regimes is also assessed and reveals contrasting behaviors in the polar regions. The perspective that emerges complements the traditional view of the interaction between synoptic eddies and the extratropical flow and reveals relationships with the high-latitude climate.


2018 ◽  
Vol 146 (8) ◽  
pp. 2559-2577 ◽  
Author(s):  
N. Vigaud ◽  
A.W. Robertson ◽  
M. K. Tippett

Abstract Four recurrent weather regimes are identified over North America from October to March through a k-means clustering applied to MERRA daily 500-hPa geopotential heights over the 1982–2014 period. Three regimes resemble Rossby wave train patterns with some baroclinicity, while one is related to an NAO-like meridional pressure gradient between eastern North America and western regions of the North Atlantic. All regimes are associated with distinct rainfall and surface temperature anomalies over North America. The four-cluster partition is well reproduced by ECMWF week-1 reforecasts over the 1995–2014 period in terms of spatial structures, daily regime occurrences, and seasonal regime counts. The skill in forecasting daily regime sequences and weekly regime counts is largely limited to 2 weeks. However, skill relationships with the MJO, ENSO, and SST variability in the Atlantic and Indian Oceans suggest further potential for subseasonal predictability based on wintertime large-scale weather regimes.


2010 ◽  
Vol 37 (7) ◽  
pp. n/a-n/a
Author(s):  
Virginie Guemas ◽  
David Salas-Mélia ◽  
Masa Kageyama ◽  
Hervé Giordani ◽  
Aurore Voldoire ◽  
...  

2009 ◽  
Vol 36 (9) ◽  
Author(s):  
Virginie Guemas ◽  
David Salas-Mélia ◽  
Masa Kageyama ◽  
Hervé Giordani ◽  
Aurore Voldoire ◽  
...  

2008 ◽  
Vol 34 (4) ◽  
pp. 527-546 ◽  
Author(s):  
Virginie Guemas ◽  
David Salas-Mélia ◽  
Masa Kageyama ◽  
Hervé Giordani ◽  
Aurore Voldoire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document