scholarly journals Calibration of Dupire local volatility model using genetic algorithm of optimization

2019 ◽  
Vol 7 (1) ◽  
pp. 1-20
Author(s):  
Maksym Bondarenko ◽  
Victor Bondarenko

The problem of calibration of local volatility model of Dupire has been formalized. It uses genetic algorithm as alternative to regularization approach with further application of gradient descent algorithm. Components that solve Dupire’s partial differential equation that represents dynamics of underlying asset’s price within Dupire model have been built. This price depends in particular on values of volatility parameters. Local volatility is parametrized in two dimensions (by Dupire model): time to maturity of the option and strike price (execution price). On maturity axis linear interpolation is used while on strike axis we use B-Splines. Genetic operators of mutation and selection are then applied to parameters of B-Splines. Resulting parameters allow us to obtain the values of local volatility both in knot points and intermediate points using interpolation techniques. Then we solve Dupire equation and calculate model values of option prices. To calculate cost function we simulate market values of option prices using classic Black-Scholes model. An experimental research to compare simulated market volatility and volatility obtained by means of calibration of Dupire model has been conducted. The goal is to estimate the precision of the approach and its usability in practice. To estimate the precision of obtained results we use a measure based on average deviation of modeled local volatility from values used to simulate market prices of the options. The research has shown that the approach to calibration using genetic algorithm of optimization requires some additional manipulations to achieve convergence. In particular it requires non-uniform discretization of the space of model parameters as well as usage of de Boor interpolation. Value 0.07 turns out to be the most efficient mutation parameter. Using this parameter leads to quicker convergence. It has been proved that the algorithm allows precise calibration of local volatility surface from option prices.

Wilmott ◽  
2016 ◽  
Vol 2016 (82) ◽  
pp. 78-87 ◽  
Author(s):  
Dingqiu Zhu ◽  
Dong Qu

2007 ◽  
Vol 44 (04) ◽  
pp. 865-879 ◽  
Author(s):  
Alexander Schied ◽  
Mitja Stadje

We consider the performance of the delta hedging strategy obtained from a local volatility model when using as input the physical prices instead of the model price process. This hedging strategy is called robust if it yields a superhedge as soon as the local volatility model overestimates the market volatility. We show that robustness holds for a standard Black-Scholes model whenever we hedge a path-dependent derivative with a convex payoff function. In a genuine local volatility model the situation is shown to be less stable: robustness can break down for many relevant convex payoffs including average-strike Asian options, lookback puts, floating-strike forward starts, and their aggregated cliquets. Furthermore, we prove that a sufficient condition for the robustness in every local volatility model is the directional convexity of the payoff function.


Sign in / Sign up

Export Citation Format

Share Document