scholarly journals Large amplitude free vibrations of simply supported moderately thick rectangular plates using coupled displacement field method

2016 ◽  
Vol 18 (6) ◽  
pp. 3451-3458
Author(s):  
Krishna Bhaskar K ◽  
Meera Saheb K
2001 ◽  
Vol 01 (04) ◽  
pp. 527-543 ◽  
Author(s):  
JAE-HOON KANG ◽  
ARTHUR W. LEISSA

This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon the Poisson's ratio (ν), results are shown for 0≤ν≤0.5, valid for isotropic materials.


2001 ◽  
Author(s):  
Arthur W. Leissa ◽  
Jae-Hoon Kang

Abstract An exact solution procedure is formulated for the free vibration and buckling analysis of rectangular plates having two opposite edges simply supported when these edges are subjected to linearly varying normal stresses. The other two edges may be clamped, simply supported or free, or they may be elastically supported. The transverse displacement (w) is assumed as sinusoidal in the direction of loading (x), and a power series is assumed in the lateral (y) direction (i.e., the method of Frobenius). Applying the boundary conditions yields the eigenvalue problem of finding the roots of a fourth order characteristic determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies and buckling loads, as is demonstrated by two convergence tables. Some interesting and useful results for vibration frequencies and buckling loads, and their mode shapes, are presented for a variety of edge conditions and in-plane loadings, especially pure in-plane moments.


Author(s):  
C W Bert ◽  
M Malik

This paper considers linear free vibrations of thin isotropic rectangular plates with combinations of the classical boundary conditions of simply supported, clamped and free edges and the mathematically possible condition of guided edges. The total number of plate configurations with the classical boundary conditions are known to be twenty-one. The inclusion of the guided edge condition gives rise to an additional thirty-four plate configurations. Of these additional cases, twenty-one cases have exact solutions for which frequency equations in explicit or transcendental form may be obtained. The frequency equations of these cases are given and, for each case, results of the first nine mode frequencies are tabulated for a range of the plate aspect ratios.


1962 ◽  
Vol 29 (1) ◽  
pp. 30-32 ◽  
Author(s):  
R. P. Nordgren

This paper contains an analysis of the free vibrations of uniformly pretwisted rectangular plates, utilizing the exact equations of classical shallow-shell theory. Specifically, solutions are given (a) for two opposite edges simply supported and the other two free, and (b) for all four edges simply supported. Numerical results obtained for case (b) are compared with previous results for the torsional vibrations of pretwisted beams. A simple frequency equation is obtained for case (b), permitting a detailed study of the effects of both pretwist and longitudinal inertia.


Sign in / Sign up

Export Citation Format

Share Document