scholarly journals In-plane vibration analysis of heavy-loaded radial tire utilizing the rigid-elastic coupling tire model with normal damping

2018 ◽  
Vol 20 (1) ◽  
pp. 573-590 ◽  
Author(s):  
Zhihao Liu ◽  
Qinhe Gao
Author(s):  
Zhihao Liu ◽  
Qinhe Gao

The in-plane vibration characteristic of time and frequency domain for heavy-loaded radial tire with a larger flat ratio (close to 1) is researched by utilizing the rigid-elastic coupled tire model with continuous sidewall. The sidewall bending stiffness is considered and the flexible beam on the elastic continuous beam tire model is proposed and investigated analytically to simulate the in-plane vibration of the heavy-loaded radial tire within more wider frequency band. The rigid-elastic coupled tire model is derived with finite difference method and the analytical stiffness matrix; mass matrix is formed based on the geometrical and structural parameters of heavy-loaded radial tire. Structural parameters are identified utilizing genetic algorithm based on the error between the analytical and experimental modal frequency. In-plane frequency domain transfer function and time domain dynamics response of heavy-loaded radial tire is investigated and compared with the experimental result. Experimental and theoretical results show that in-plane rigid-elastic coupled tire model with sidewall bending stiffness can be used to precisely predict the transfer function and vibration feature within the frequency band of 300 Hz, compared with the tire model with the distributed independent sidewall element. The flexible beam on the elastic continuous beam tire model and rigid-elastic coupled tire model with continuous sidewall can be extended to the dynamic analysis of the tire with larger flat ratio or the tire under the impulsive loading conditions.


2002 ◽  
Vol 254 (4) ◽  
pp. 787-800 ◽  
Author(s):  
Y.J. YOON ◽  
J.M. LEE ◽  
S.W. YOO ◽  
H.G. CHOI

2016 ◽  
Vol 64 (5) ◽  
pp. 658-667 ◽  
Author(s):  
Donghua Wang ◽  
Shuai Zhijun ◽  
Liu Wei ◽  
Chen Meilong ◽  
Liu Siyuan ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xianjie Shi ◽  
Dongyan Shi ◽  
Zhengrong Qin ◽  
Qingshan Wang

In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document