scholarly journals Experimental approach for improving the removal efficiency of a metal pollutant using the Activated Sludge as a wastewater treatment process

2019 ◽  
Vol 23 (2) ◽  
pp. 421-432
Author(s):  
Mansor Galal ◽  
Ahmad AbdElazez ◽  
Ramadan M. Abd-Rabuo ◽  
Atef El-Tokhy
RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41727-41737 ◽  
Author(s):  
Hebin Liang ◽  
Dongdong Ye ◽  
Lixin Luo

Activated sludge is essential for the biological wastewater treatment process and the identification of active microbes enlarges awareness of their ecological functions in this system.


2001 ◽  
Vol 44 (9) ◽  
pp. 189-196 ◽  
Author(s):  
P. Hardy ◽  
J.E. Burgess ◽  
S. Morton ◽  
R.M. Stuetz

Lab-scale tests were used to determine the amount of H2S that can be treated using a range of different activated sludges. Static vessels were used to study the effects of different H2S concentrations (5, 25, 50 and 75 ppm). The data indicated that odour control may be carried out using certain types of sludge, but sludge type, e.g. carbonaceous, nitrifying, with or without coagulant, affects removal efficiency. The presence of the biomass resulted in greater H2S removal than the use of wet scrubbing and the adverse effects on mixed liquor were negligible. A pilot plant was used to study the removal efficiencies of activated sludge diffusion using a typical wastewater treatment plant H2S concentration and investigated the effects that the diffusion of H2S had on the process performance. Results indicated that the levels of H2S produced by other unit processes on a wastewater treatment site (approximately 5 ppm) can be treated using activated sludge diffusion without compromising the performance of the wastewater treatment process. The only effects on the activated sludge plant observed were: (1) nitrification was interrupted briefly as H2S diffusion commenced and (2) the species' diversity in the sludge decreased.


Sign in / Sign up

Export Citation Format

Share Document