metabolic potential
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 345)

H-INDEX

49
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Els van der Goot ◽  
Stefanie N. Vink ◽  
Danique van Vliet ◽  
Francjan J. van Spronsen ◽  
Joana Falcao Salles ◽  
...  

Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, “high” Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.


Author(s):  
Zhang-Xian Xie ◽  
Ke-Qiang Yan ◽  
Ling-Fen Kong ◽  
Ying-Bao Gai ◽  
Tao Jin ◽  
...  

AbstractUnderstanding the mechanisms, structuring microbial communities in oligotrophic ocean surface waters remains a major ecological endeavor. Functional redundancy and metabolic tuning are two mechanisms that have been proposed to shape microbial response to environmental forcing. However, little is known about their roles in the oligotrophic surface ocean due to less integrative characterization of community taxonomy and function. Here, we applied an integrated meta-omics-based approach, from genes to proteins, to investigate the microbial community of the oligotrophic northern Indian Ocean. Insignificant spatial variabilities of both genomic and proteomic compositions indicated a stable microbial community that was dominated by Prochlorococcus, Synechococcus, and SAR11. However, fine tuning of some metabolic functions that are mainly driven by salinity and temperature was observed. Intriguingly, a tuning divergence occurred between metabolic potential and activity in response to different environmental perturbations. Our results indicate that metabolic tuning is an important mechanism for sustaining the stability of microbial communities in oligotrophic oceans. In addition, integrated meta-omics provides a powerful tool to comprehensively understand microbial behavior and function in the ocean.


2022 ◽  
Author(s):  
Craig Patrick Barry ◽  
Rosemary Gillane ◽  
Gert Hoy Talbo ◽  
Manuel Plan ◽  
Robin Palfreyman ◽  
...  

The emergence of multidrug-resistant pathogenic bacteria creates a demand for novel antibiotics with distinct mechanisms of action. Advances in next-generation genome sequencing promised a paradigm shift in the quest to...


2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Krishni Fernando ◽  
Priyanka Reddy ◽  
German C. Spangenberg ◽  
Simone J. Rochfort ◽  
Kathryn M. Guthridge

Asexual species of the genus Epichloë (Clavicipitaceae, Ascomycota) form endosymbiotic associations with Pooidae grasses. This association is important both ecologically and to the pasture and turf industries, as the endophytic fungi confer a multitude of benefits to their host plant that improve competitive ability and performance such as growth promotion, abiotic stress tolerance, pest deterrence and increased host disease resistance. Biotic stress tolerance conferred by the production of bioprotective metabolites has a critical role in an industry context. While the known antimammalian and insecticidal toxins are well characterized due to their impact on livestock welfare, antimicrobial metabolites are less studied. Both pasture and turf grasses are challenged by many phytopathogenic diseases that result in significant economic losses and impact livestock health. Further investigations of Epichloë endophytes as natural biocontrol agents can be conducted on strains that are safe for animals. With the additional benefits of possessing host disease resistance, these strains would increase their commercial importance. Field reports have indicated that pasture grasses associated with Epichloë endophytes are superior in resisting fungal pathogens. However, only a few antifungal compounds have been identified and chemically characterized, and these from sexual (pathogenic) Epichloë species, rather than those utilized to enhance performance in turf and pasture industries. This review provides insight into the various strategies reported in identifying antifungal activity from Epichloë endophytes and, where described, the associated antifungal metabolites responsible for the activity.


2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Tina Kollannoor Johny ◽  
Rinu Madhu Puthusseri ◽  
Sarita Ganapathy Bhat

2021 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Gabriella Caruso ◽  
Maria Grazia Giacobbe ◽  
Filippo Azzaro ◽  
Franco Decembrini ◽  
Marcella Leonardi ◽  
...  

Bacterial and phytoplankton communities are known to be in close relationships, but how natural and anthropogenic stressors can affect their dynamics is not fully understood. To study the response of microbial communities to environmental and human-induced perturbations, phytoplankton and bacterial communities were seasonally monitored in a Mediterranean coastal ecosystem, Syracuse Bay, where multiple conflicts co-exist. Quali-quantitative, seasonal surveys of the phytoplankton communities (diatoms, dinoflagellates and other taxa), the potential microbial enzymatic activity rates (leucine aminopeptidase, beta-glucosidase and alkaline phosphatase) and heterotrophic culturable bacterial abundance, together with the thermohaline structure and trophic status in terms of nutrient concentrations, phytoplankton biomass (as Chlorophyll-a), and total suspended and particulate organic matter, were carried out. The aim was to integrate microbial community dynamics in the context of the environmental characterization and disentangle microbial patterns related to natural changes from those driven by the anthropic impact on this ecosystem. In spite of the complex relationships between the habitat characteristics, microbial community abundance and metabolic potential, in Syracuse Bay, the availability of organic substrates differently originated by the local conditions appeared to drive the distribution and activity of microbial assemblage. A seasonal pattern of microbial abundances was observed, with the highest concentrations of phytoplankton in spring and low values in winter, whereas heterotrophic bacteria were more abundant during the autumn period. The autumn peaks of the rates of enzymatic activities suggested that not only phytoplankton-derived but also allochthonous organic polymers strongly stimulated microbial metabolism. Increased microbial response in terms of abundance and metabolic activities was detected especially at the sites directly affected by organic matter inputs related to agriculture or aquaculture activities. Nitrogen salts such as nitrate, rather than orthophosphate, were primary drivers of phytoplankton growth. This study also provides insights on the different seasonal scenarios of water quality in Syracuse Bay, which could be helpful for management plans of this Mediterranean coastal environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pablo Carril ◽  
Joana Cruz ◽  
Claudia di Serio ◽  
Giuseppe Pieraccini ◽  
Sylia Ait Bessai ◽  
...  

Plants and their associated microbiota share ecological and evolutionary traits that are considered to be inseparably woven. Their coexistence foresees the use of similar metabolic pathways, leading to the generation of molecules that can cross-regulate each other’s metabolism and ultimately influence plant phenotype. However, the extent to which the microbiota contributes to the overall plant metabolic landscape remains largely unexplored. Due to their early presence in the seed, seed-borne endophytic bacteria can intimately colonize the plant’s endosphere while conferring a series of phytobeneficial services to their host. Understanding the dynamics of these endophytic communities is a crucial step toward the formulation of microbial inoculants that can modulate the functionality of the plant-associated microbiota for improved plant fitness. In this work, wheat (Triticum aestivum) roots non-inoculated and inoculated with the bacterium Herbaspirillum seropedicae strain RAM10 were analyzed to explore the impact of inoculant–endophyte–wheat interrelationships on the regulation of tryptophan (Trp) metabolism in the endosphere environment. Root inoculation with H. seropedicae led to phylum-specific changes in the cultivable seed-borne endophytic community. This modulation shifted the metabolic potential of the community in light of its capacity to modulate the levels of key Trp-related metabolites involved in both indole-3-acetic acid (IAA) biosynthesis and in the kynurenine pathway. Our results support a mode of action of H. seropedicae relying on a shift in both the composition and functionality of the seed-borne endophytic community, which may govern important processes such as root growth. We finally provide a conceptual framework illustrating that interactions among roots, inoculants, and seed-borne endophytes are critical to fine-tuning the levels of IAA in the endosphere. Understanding the outcomes of these interactions is a crucial step toward the formulation of microbial inoculants based on their joint action with seed-borne endophytic communities to promote crop growth and health in a sustainable manner.


2021 ◽  
Author(s):  
Rima Ouchene ◽  
Didier Stien ◽  
Juliette Segret ◽  
Mouloud Kecha ◽  
Alice MS Rodrigues ◽  
...  

Multi-omic approaches have recently made big strides towards the effective exploration of microorganisms and accelerating the discovery of new bioactive compounds. We combined metabolomic, molecular networking, and genomic-based approaches to investigate the metabolic potential of the Streptomyces sp. RO-S4 strain isolated from the polluted waters of Bejaia Bay in Algeria. Antagonistic assays against methicillin-resistant Staphylococcus aureus with RO-S4 organic extracts showed an inhibition zone of 20 mm by the agar diffusion method, and its minimum inhibitory concentration was 16 μg/mL. A molecular network was created using GNPS and annotated through the comparison of MS/MS spectra against several databases. The predominant compounds in the RO-S4 extract belonged to the angucyclines family. Three compounds were annotated as known metabolites, while all the others were putatively new to Science. Notably, all compounds had fridamycin-like aglycones, and several of them had a lactonized D ring analogous to that of urdamycin L. The whole genome of Streptomyces RO-S4 was sequenced to identify the biosynthetic gene cluster (BGC) encoding for these angucyclines, which yielded a draft genome of 7,497,846 bp with 72.4% G+C content. Subsequently, a genome mining analysis revealed 19 putative biosynthetic gene clusters, including a grincamycin-like BGC with a high similarity to that of Streptomyces sp. CZN-748 previously reported to also produce mostly open fridamycin-like aglycones. As the ring-opening process leading to these compounds is still not defined, we performed comparative analysis with other angucycline BGCs and advanced some hypotheses to explain the ring-opening and lactone formation, possibly linked to the uncoupling between the activity of GcnE and GcnM homologues in the RO-S4 strain. The combination of metabolomic and genomic approaches greatly improved the interpretation of the metabolic potential of the RO-S4 strain.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Abigail L. Glascock ◽  
Nicole R. Jimenez ◽  
Sam Boundy ◽  
Vishal N. Koparde ◽  
J. Paul Brooks ◽  
...  

The composition of the human vaginal microbiome has been extensively studied and is known to influence reproductive health. However, the functional roles of individual taxa and their contributions to negative health outcomes have yet to be well characterized. Here, we examine two vaginal bacterial taxa grouped within the genus Megasphaera that have been previously associated with bacterial vaginosis (BV) and pregnancy complications. Phylogenetic analyses support the classification of these taxa as two distinct species. These two phylotypes, Megasphaera phylotype 1 (MP1) and Megasphaera phylotype 2 (MP2), differ in genomic structure and metabolic potential, suggestive of differential roles within the vaginal environment. Further, these vaginal taxa show evidence of genome reduction and changes in DNA base composition, which may be common features of host dependence and/or adaptation to the vaginal environment. In a cohort of 3870 women, we observed that MP1 has a stronger positive association with bacterial vaginosis whereas MP2 was positively associated with trichomoniasis. MP1, in contrast to MP2 and other common BV-associated organisms, was not significantly excluded in pregnancy. In a cohort of 52 pregnant women, MP1 was both present and transcriptionally active in 75.4 % of vaginal samples. Conversely, MP2 was largely absent in the pregnant cohort. This study provides insight into the evolutionary history, genomic potential and predicted functional role of two clinically relevant vaginal microbial taxa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Viola Krukenberg ◽  
Nicholas J. Reichart ◽  
Rachel L. Spietz ◽  
Roland Hatzenpichler

Organic-rich, hydrothermal sediments of the Guaymas Basin are inhabited by diverse microbial communities including many uncultured lineages with unknown metabolic potential. Here we investigated the short-term effect of polysaccharide amendment on a sediment microbial community to identify taxa involved in the initial stage of macromolecule degradation. We incubated anoxic sediment with cellulose, chitin, laminarin, and starch and analyzed the total and active microbial communities using bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Our results show a response of an initially minor but diverse population of Clostridia particularly after amendment with the lower molecular weight polymers starch and laminarin. Thus, Clostridia may readily become key contributors to the heterotrophic community in Guaymas Basin sediments when substrate availability and temperature range permit their metabolic activity and growth, which expands our appreciation of the potential diversity and niche differentiation of heterotrophs in hydrothermally influenced sediments. BONCAT-FACS, although challenging in its application to complex samples, detected metabolic responses prior to growth and thus can provide complementary insight into a microbial community’s metabolic potential and succession pattern. As a primary application of BONCAT-FACS on a diverse deep-sea sediment community, our study highlights important considerations and demonstrates inherent limitations associated with this experimental approach.


Sign in / Sign up

Export Citation Format

Share Document