scholarly journals Integrated modeling of spacecraft relative motion dynamics using dual quaternion

2018 ◽  
Vol 29 (2) ◽  
pp. 367-377
Author(s):  
Xuan PENG ◽  
◽  
Xiaoping SHI ◽  
Yupeng GONG ◽  
2017 ◽  
Vol 40 (8) ◽  
pp. 1837-1859 ◽  
Author(s):  
Joshua Sullivan ◽  
Sebastian Grimberg ◽  
Simone D’Amico

Author(s):  
Yongxing Tang ◽  
Zhanxia Zhu

In order to better meet the future high precision task requirements, the DFP(Disturbance-Free Payload) spacecraft composed of non-contact PM(Payload Module)and SM(Support Module)is taken as the object to study the relative motion dynamics modeling and control between the two modules and verify the system vibration isolation performance. Firstly, the force and torque expressions of the two modules are derived by simplifying the configuration and analyzing the stress. In view of that couple effect, the relative motion dynamics equations between two modules of DFP spacecraft with high model accuracy, and simple and uniform format are established with the dual quaternions. Based on this, the PD control law is designed, and the relative motion of PM and SM could meet DFP spacecraft working requirements when the measurability of control quantity and the measurement error of sensors were taken into account. Simulation results verify the advantage of vibration isolation and attitude maneuverability of DFP spacecraft.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Sun ◽  
Shijie Zhang ◽  
Xiande Wu ◽  
Fengzhi Guo ◽  
Yaen Xie

For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF) and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document