A secure image steganography algorithm based on least significant bit and integer wavelet transform

2018 ◽  
Vol 29 (3) ◽  
pp. 639 ◽  
2021 ◽  
Author(s):  
Ching-Yu Yang ◽  
Wen-Fong Wang

Abstract In this work, we present an improved steganography for electrocardiogram (ECG) hosts to solve the issues of existing ECG steganographic methods, which have less hiding capacity and insufficient signal-to-noise ratio (SNR)/ peak SNR (PSNR). Based on the integer wavelet transform (IWT) domain, sensitive (or private) data such as patients’ data and personal information can be efficiently embedded in an ECG host via the IWT coefficient adjustment and the least significant bit (LSB) technique. Simulations confirmed that the SNR/ PSNR, and payload of the proposed method outperform those of existing techniques. In addition, the proposed method is capable of resisting attacks, such as cropping, Gaussian noise-addition inversion, scaling, translation, and truncation attacks from third parties (or adversaries). Due to the fast computation time, the proposed method can be employed in portable biometric devices or wearable electronics.


2019 ◽  
Vol 62 (11) ◽  
pp. 1639-1655
Author(s):  
Manashee Kalita ◽  
Themrichon Tuithung ◽  
Swanirbhar Majumder

Abstract Steganography is a data hiding technique, which is used for securing data. Both spatial and transform domains are used to implement a steganography method. In this paper, a novel transform domain method is proposed to provide a better data hiding method. The method uses a multi-resolution transform function, integer wavelet transform (IWT) that decomposes an image into four subbands: low-low, low-high, high-low and high-high subband. The proposed method utilizes only the three subbands keeping the low-low subband untouched which helps to improve the quality of the stego image. The method applies a coefficient value differencing approach to determine the number of secret bits to be embedded in the coefficients. The method shows a good performance in terms of embedding capacity, imperceptibility and robustness. A number of metrics are computed to show the quality of the stego image. It can also withstand RS steganalysis, Chi-squared test and Subtractive Pixel Adjacency Matrix steganalysis successfully. The deformation of the histogram and Pixel Difference Histogram for different embedding percentages are also demonstrated, which show a significant similarity with the original cover image. The proposed method shows an achievement of 2.3bpp embedding capacity with a good quality of stego image.


Sign in / Sign up

Export Citation Format

Share Document