Electric Field Analysis of High Voltage Condenser Bushing

Author(s):  
R. Anguraja ◽  
Pradipkumar Dixit
2014 ◽  
Vol 684 ◽  
pp. 259-263
Author(s):  
Yang Tao Yu ◽  
Peng Cheng Zhao ◽  
Xin Wang ◽  
Ye Tian

The main approach to obtain nanomaterial is nanospinning technology at present. Due to the inherent characteristics of nanomaterial itself, which are easily affected by the electric field force effect of spinning. And for the spinning machine nozzle electric field is relatively complex, so nanospinning products at present, is easily affected by the electric field force and dissipated. So, the nanospinning collection efficiency is low. This paper adopts an oval enhanced electrostatic mechanism, method of using additional electric field to improve the balance obtained nanomaterial collection rate. And the construct high voltage electrostatic spinning machine virtual prototype,complete the analysis of the improved method of static electric field. The analysis results indicate that the electric field can effectively improve the collection rate of nanospinning. Through the study of the additional electric field strength further size on the electric field force and the ellipse, can more effectively improve the collection rate of nanospinning products.


2018 ◽  
Vol 64 ◽  
pp. 04006
Author(s):  
Tang Xinling ◽  
Pan Yan ◽  
Chen Yanfang ◽  
Fu Pengyu ◽  
Zhao Zhibin

High voltage IGBT module is the ideal option for the VSC-HVDC power transmission application. At present, wire-bonded technology and press-pack technology are available packaging technologies for high voltage IGBT. The press-pack IGBTs have such advantages as low inductance, low thermal impedance and short circuit failure mode than the wire-bonded IGBT module, which especially suit for high voltage power transmission application by series connection. However, the electrical insulation failure modes of press-pack IGBTs are much less known with limited literature published. In this paper, we presented the electric field analysis of a 3D press-pack IGBT model under DC rating voltage test condition. The electric field distribution of the press-pack IGBT stack was solved as an electrostatic problem by employing the finite element method. The results revealed the potential electrical insulation failure modes of the press-pack IGBTs: corona discharge at the edge of silver plate, partial discharge at the micro gap between die and PEEK frame and creeping discharge at the surface of PEEK frame.


2012 ◽  
pp. 1230-1234
Author(s):  
J.A. Güemes ◽  
A. Iraolagoitia ◽  
P. Fernández ◽  
J. Sánchez

Sign in / Sign up

Export Citation Format

Share Document