Wastewater Treatment Plant Design and Operation Modifications to Improve Management of Biosolids: Regrowth, Odors, and Sudden Increase in Indicator Organisms

2016 ◽  
Vol 15 (0) ◽  
pp. 9781780404578-9781780404578
Author(s):  
M. J. Higgins ◽  
S. N. Murthy
1993 ◽  
Vol 28 (10) ◽  
pp. 73-81 ◽  
Author(s):  
F. Brissaud ◽  
J. Lesavre

A survey was carried out during the late '80s over 7 infiltration percolation plants, serving populations ranging between 400 and 1700. With sand depths, hydraulic loads, influent COD and NTK concentrations respectively ranging from 0.6 to 0.2 m, 0.07 to 0.77m/day, 820 to 75 and 70 to 10 mg/l, and with different operating schedules, this set of plants displays a wide spectrum of infiltration percolation in use. When plants are suitably designed, sized and operated, primary effluents oxidation is very effective and current EEC quality standards for wastewater treatment plant effluents are matched. Disinfection is poor, below the level expected from laboratory and pilot plant data. This is due to non-uniform spreading of the influents on the infiltration areas and exceedingly short circuits and short water detention times in the sand beds. Based on a theoretical approach and on data obtained from these and many other plants, a sizing methodology is provided. Recommended improvements in the spreading technology, as well as in the plant design and management, should lead to more reliable oxidation and disinfection performance


1993 ◽  
Vol 119 (5) ◽  
pp. 931-945 ◽  
Author(s):  
J. ‐J. Kao ◽  
E. D. Brill ◽  
J. T. Pfeffer ◽  
J. J. Geselbracht

2012 ◽  
Vol 11 ◽  
pp. 25-28
Author(s):  
Arshad Ali ◽  
Muhammad Jawed Iqbal

The decline in the availability and alarming pollution of the existing water resources is the major environmental problem of third-world countries. The main reason of water pollution is the disposal of untreated industrial effl uents. This study was designed to evaluate the pollution load caused by a paper mill, and to propose a wastewater treatment plant design, based on the analyses of wastewater samples. The wastewater samples were collected from the local paper mill for a period of more than four months on a regular basis. The pH, temperature, color, TSS, TDS, BOD, COD and AOX were measured as, 8.1, 23°C, 2,431 PtCo unit, 956 mg/L, 3,046 mg/L, 1,582 mg/L, 2,492 mg/L and 19.81 mg/L, respectively. Based on the data obtained, the wastewater treatment plant consisting of a screening chamber, primary sedimentation tank and a UASB reactor was designed. It was concluded that the treatment effi ciency of more than 75% removal of BOD and COD concentrations could be accomplished. The treatment plant will also be able to produce 2,200 m3/day of biogas.DOI: http://dx.doi.org/10.3126/hn.v11i0.7157 Hydro Nepal Vol.11 2011 pp.25-28


Sign in / Sign up

Export Citation Format

Share Document