scholarly journals Proposed Wastewater Treatment Plant for a Paper Mill

2012 ◽  
Vol 11 ◽  
pp. 25-28
Author(s):  
Arshad Ali ◽  
Muhammad Jawed Iqbal

The decline in the availability and alarming pollution of the existing water resources is the major environmental problem of third-world countries. The main reason of water pollution is the disposal of untreated industrial effl uents. This study was designed to evaluate the pollution load caused by a paper mill, and to propose a wastewater treatment plant design, based on the analyses of wastewater samples. The wastewater samples were collected from the local paper mill for a period of more than four months on a regular basis. The pH, temperature, color, TSS, TDS, BOD, COD and AOX were measured as, 8.1, 23°C, 2,431 PtCo unit, 956 mg/L, 3,046 mg/L, 1,582 mg/L, 2,492 mg/L and 19.81 mg/L, respectively. Based on the data obtained, the wastewater treatment plant consisting of a screening chamber, primary sedimentation tank and a UASB reactor was designed. It was concluded that the treatment effi ciency of more than 75% removal of BOD and COD concentrations could be accomplished. The treatment plant will also be able to produce 2,200 m3/day of biogas.DOI: http://dx.doi.org/10.3126/hn.v11i0.7157 Hydro Nepal Vol.11 2011 pp.25-28

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1339
Author(s):  
Javier Bayo ◽  
Sonia Olmos ◽  
Joaquín López-Castellanos

This study investigates the removal of microplastics from wastewater in an urban wastewater treatment plant located in Southeast Spain, including an oxidation ditch, rapid sand filtration, and ultraviolet disinfection. A total of 146.73 L of wastewater samples from influent and effluent were processed, following a density separation methodology, visual classification under a stereomicroscope, and FTIR analysis for polymer identification. Microplastics proved to be 72.41% of total microparticles collected, with a global removal rate of 64.26% after the tertiary treatment and within the average retention for European WWTPs. Three different shapes were identified: i.e., microfiber (79.65%), film (11.26%), and fragment (9.09%), without the identification of microbeads despite the proximity to a plastic compounding factory. Fibers were less efficiently removed (56.16%) than particulate microplastics (90.03%), suggesting that tertiary treatments clearly discriminate between forms, and reporting a daily emission of 1.6 × 107 microplastics to the environment. Year variability in microplastic burden was cushioned at the effluent, reporting a stable performance of the sewage plant. Eight different polymer families were identified, LDPE film being the most abundant form, with 10 different colors and sizes mainly between 1–2 mm. Future efforts should be dedicated to source control, plastic waste management, improvement of legislation, and specific microplastic-targeted treatment units, especially for microfiber removal.


2004 ◽  
Vol 49 (1) ◽  
pp. 9-14 ◽  
Author(s):  
G. Langergraber ◽  
N. Fleischmann ◽  
F. Hofstaedter ◽  
A. Weingartner

A submersible UV/VIS spectrometer was used to monitor a paper mill wastewater treatment plant. It utilises the UV/VIS range (200-750 nm) for simultaneous measurement of COD, filtered COD, TSS and nitrate with just a single instrument. The instrument measures in-situ, directly in the process. Paper mill wastewater shows typical and reproducible spectra at various process measuring points. There is a relative maximum at 280 mm due to the absorbance by dissolved organic substances, mainly ligninic acids. Comparison of absorbance spectra distinctly shows the decrease of this peak, indicating biological degradation throughout the treatment process. Summarising, one can say that paper mill wastewater cannot be monitored by a simple UV probe measuring only the absorbance at a single wavelength. The required information can only be gained from the whole spectra. Regarding plant control it is suggested that only the overall spectral information is used. Calibrations to conventional parameters are now merely carried out for purposes of reference-checking.


2019 ◽  
Vol 14 (4) ◽  
pp. 908-920 ◽  
Author(s):  
Oliver Saavedra ◽  
Ramiro Escalera ◽  
Gustavo Heredia ◽  
Renato Montoya ◽  
Ivette Echeverría ◽  
...  

Abstract This study aims to determine the seasonal variability in the performance of a medium size population wastewater treatment plant (WWTP) in Bolivia. The semi-arid area where the WWTP is located is characterized as agricultural land, with an annual rainfall of 500 mm and a mean temperature of 17 °C. The WWTP is built up of five modules, each one comprising two treatment trains composed of an upflow anaerobic sludge blanket (UASB) reactor and horizontal gravel filter. The performance of the full process has been determined based on water quantity and quality. Seven monitoring campaigns of chemical and physical wastewater characteristics were performed from March to December 2017. The measured effluent showed average removal efficiencies of 83 ± 8% and 37 ± 60% for total chemical oxygen demand (COD) and total suspended solids (TSS), respectively. The treatment system has proven to be efficient to remove organic matter and TSS, despite the occurrence of high COD and total solids (TS) influent concentrations, the accumulation of solids at all the processes and the variability of flow and temperature inside the UASB reactors. In order to improve further this efficiency, it is recommended to implement a primary sedimentation unit as a pretreatment for the UASB system that would help to homogenize both the flow and the quality of the influent.


1993 ◽  
Vol 28 (10) ◽  
pp. 73-81 ◽  
Author(s):  
F. Brissaud ◽  
J. Lesavre

A survey was carried out during the late '80s over 7 infiltration percolation plants, serving populations ranging between 400 and 1700. With sand depths, hydraulic loads, influent COD and NTK concentrations respectively ranging from 0.6 to 0.2 m, 0.07 to 0.77m/day, 820 to 75 and 70 to 10 mg/l, and with different operating schedules, this set of plants displays a wide spectrum of infiltration percolation in use. When plants are suitably designed, sized and operated, primary effluents oxidation is very effective and current EEC quality standards for wastewater treatment plant effluents are matched. Disinfection is poor, below the level expected from laboratory and pilot plant data. This is due to non-uniform spreading of the influents on the infiltration areas and exceedingly short circuits and short water detention times in the sand beds. Based on a theoretical approach and on data obtained from these and many other plants, a sizing methodology is provided. Recommended improvements in the spreading technology, as well as in the plant design and management, should lead to more reliable oxidation and disinfection performance


1993 ◽  
Vol 119 (5) ◽  
pp. 931-945 ◽  
Author(s):  
J. ‐J. Kao ◽  
E. D. Brill ◽  
J. T. Pfeffer ◽  
J. J. Geselbracht

Sign in / Sign up

Export Citation Format

Share Document