scholarly journals Incorporation of artificial neural networks and data assimilation techniques into a third-generation wind–wave model for wave forecasting

2006 ◽  
Vol 8 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Zhixu Zhang ◽  
Chi-Wai Li ◽  
Yok-Sheung Li ◽  
Yiquan Qi

Although the third-generation formulation of the ocean wave model describes the wave generation, dissipation and nonlinear interaction processes explicitly, many empirical parameters exist in the model which have to be determined experimentally. With the advance in oceanographic remote-sensing techniques, information on oceanic parameters including significant wave height (SWH) can be obtained daily by satellite altimeters. The assimilation of these data into the wave model provides a way of improving the hindcasting results. However, for wave forecasting, no altimeter data exist during the forecasting period, by definition. To improve the forecasting accuracy of the wave model, Artificial Neural Networks (ANN) are introduced to mimic the errors introduced by the wave model. This is achieved by training the ANN using the wave model output as input, and the results after data assimilation as the targeted output. The trained ANN is then used as a post-processor of the output from the wave model. The proposed method has been applied in wave simulation in the northwestern Pacific Ocean. The statistical interpolation method is used to assimilate the altimeter data into the wave model output and a back-propagation ANN is used to mimic the relation between the wave model outputs with or without data assimilation. The results show that an apparent improvement in the accuracy of forecasting can be obtained.

2008 ◽  
Vol 135 ◽  
pp. 012073 ◽  
Author(s):  
Helaine Cristina Morais Furtado ◽  
Haroldo Fraga de Campos Velho ◽  
Elbert Einstein Nehrer Macau

2006 ◽  
Vol 23 (11) ◽  
pp. 1593-1603 ◽  
Author(s):  
S. N. Londhe ◽  
Vijay Panchang

Abstract Sophisticated wave models like the Wave Model (WAM) and Simulating Waves Nearshore (SWAN)/WAVEWATCH are used nowadays along with atmospheric models to produce forecasts of ocean wave conditions. These models are generally run operationally on large ocean-scale domains. In many coastal areas, on the other hand, operational forecasting is not performed for a variety of reasons, yet the need for wave forecasts remains. To address such cases, the production of forecasts through the use of artificial neural networks and buoy measurements is explored. A modeling strategy that predicts wave heights up to 24 h on the basis of judiciously selected measurements over the previous 7 days was examined. A detailed investigation of this strategy using data from six National Data Buoy Center (NDBC) buoys with diverse geographical and statistical properties demonstrates that 6-h forecasts can be obtained with a high level of fidelity, and forecasts up to 12 h showed a correlation of 67% or better relative to a full year of data. One limitation observed was the inability of the artificial neural network model to correctly predict the magnitude of the highest waves; although the occurrence of high waves was predicted, the peaks were underestimated. The inclusion of several years of data and the judicious selection of the training set, especially the inclusion of extreme events, were shown to be crucial for the model to recognize interannual variability and provide more reliable forecasts. Real-time simulations performed for April 2005 demonstrate the efficiency of this technology for operational forecasting.


2020 ◽  
Vol 1 (1) ◽  
pp. 54-62
Author(s):  
Carlo Fiorina ◽  
Alessandro Scolaro ◽  
Daniel Siefman ◽  
Mathieu Hursin ◽  
Andreas Pautz

This paper preliminarily investigates the use of data-driven surrogates for fuel performance codes. The objective is to develop fast-running models that can be used in the frame of uncertainty quantification and data assimilation studies. In particular, data assimilation techniques based on Monte Carlo sampling often require running several thousand, or tens of thousands of calculations. In these cases, the computational requirements can quickly become prohibitive, notably for 2-D and 3-D codes. The paper analyses the capability of artificial neural networks to model the steady-state thermal-mechanics of the nuclear fuel, assuming given released fission gases, swelling, densification and creep. An optimized and trained neural network is then employed on a data assimilation case based on the end of the first ramp of the IFPE Instrumented Fuel Assemblies 432.


2020 ◽  
Vol 11 (42) ◽  
pp. 97-104
Author(s):  
Fereshte Komijani ◽  
Masoud Montazeri Namin ◽  
Asghar bohluly ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document